Learning 3D Reconstruction in Function Space

Andreas Geiger

Autonomous Vision Group
MPI for Intelligent Systems and University of Tübingen

June 15, 2020

Collaborators

Michael Niemeyer

Michael Oechsle

Sebastian Nowozin

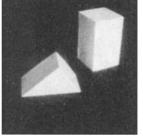
Andreas Geiger

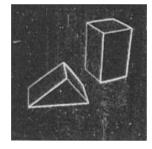
Our goal is to make **intelligent systems**

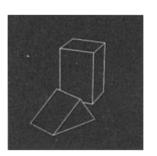
more autonomous, robust and safe

3D reconstruction is a hard problem

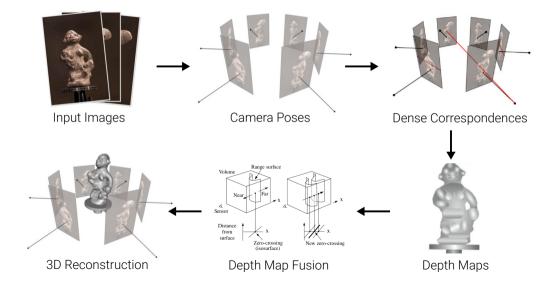
1963: Blocks World







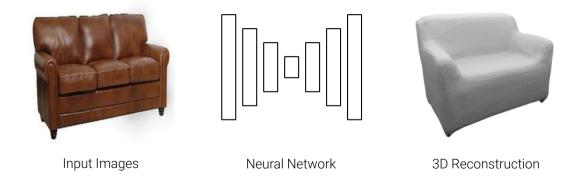
Traditional 3D Reconstruction Pipeline



Humans recognize 3D from a **single** 2D image

Can we **learn** to infer 3D **from a 2D image**?

3D Reconstruction from a 2D Image

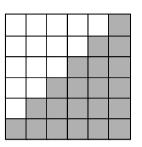


What is a good **output** representation?

Voxels:

- ► **Discretization** of 3D space into grid
- ► Easy to process with neural networks
- ► Cubic memory $O(n^3)$ \Rightarrow limited resolution
- ► Manhattan world bias

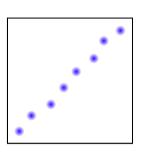
[Maturana et al., IROS 2015]



Points:

- ▶ **Discretization** of surface into 3D points
- Does not model connectivity / topology
- ► Limited number of points
- ► Global shape description

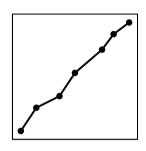
[Fan et al., CVPR 2017]



Meshes:

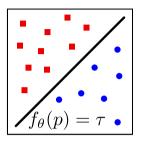
- ► **Discretization** into vertices and faces
- Limited number of vertices / granularity
- ► Requires class-specific template or –
- ► Leads to self-intersections

[Groueix et al., CVPR 2018]



This work:

- ▶ Implicit representation \Rightarrow No discretization
- ► Arbitrary topology & resolution
- ► Low memory footprint
- ► Not restricted to specific class



Occupancy Networks

Key Idea:

- Do not represent 3D shape explicitly
- ► Instead, consider surface implicitly as decision boundary of a non-linear classifier:

$$f_{ heta}: \mathbb{R}^3 imes \mathcal{X}
ightarrow [0,1]$$
 f
 f

Condition

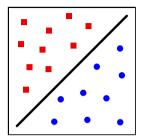
Location

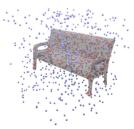
Condition

Coccupancy

Probability

- ► DeepSDF [Park et al., CVPR 2019]
- ► IM-NET [Chen et al., CVPR 2019]





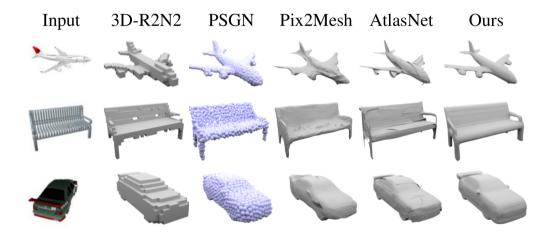
Training Objective

Occupancy Network: Variational Occupancy Encoder:

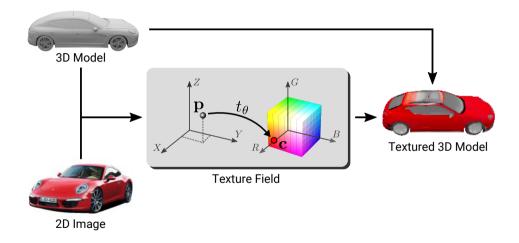
$$\mathcal{L}(\theta, \psi) = \sum_{j=1}^{K} \mathsf{BCE}(f_{\theta}(p_{ij}, z_i), o_{ij}) + KL\left[q_{\psi}(z | (p_{ij}, o_{ij})_{j=1:K}) \parallel p_0(z)\right]$$

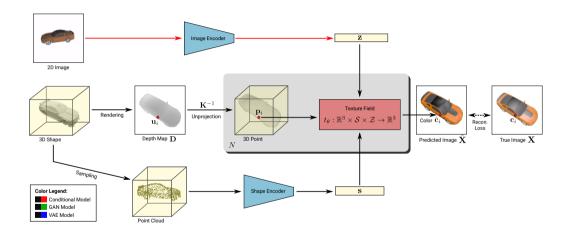
- ► K: Randomly sampled 3D points (K = 2048)
- ► BCE: Cross-entropy loss
- $ightharpoonup q_{\psi}$: Encoder

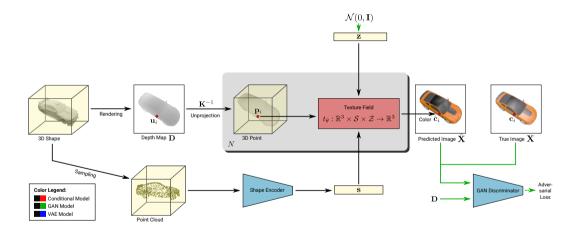
Results

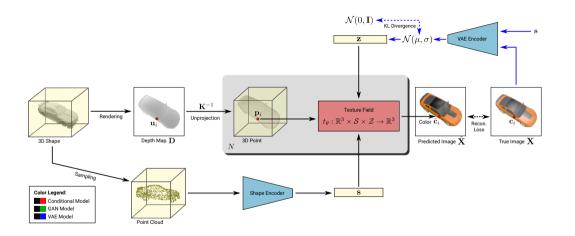


Can we also learn about object **appearance**?





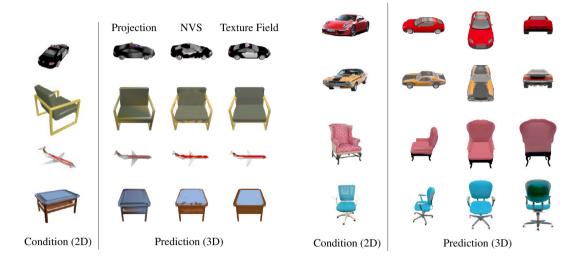


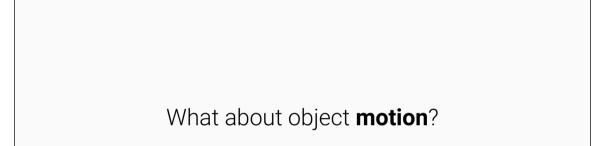


Representation Power

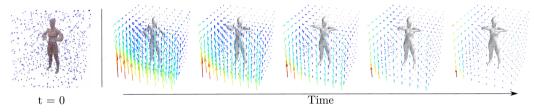
► Ground truth vs. Texture Field vs. Voxelization

Results





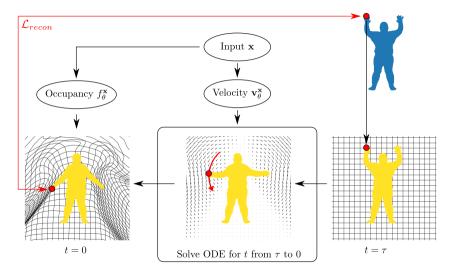
Occupancy Flow



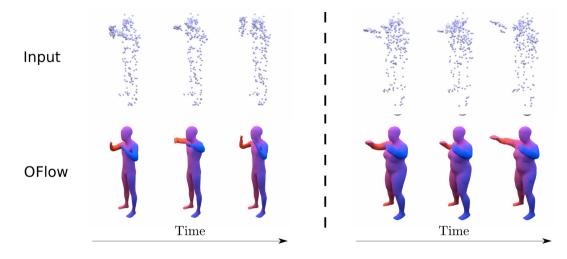
- ► Extending Occupancy Networks to 4D is hard (curse of dimensionality)
- lacktriangle Represent shape at t=0 using a 3D Occupancy Network
- Represent motion by temporally and spatially continuous vector field
- lacktriangle Relationship between 3D trajectory ${f s}$ and velocity ${f v}$ given by (differentiable) ODE:

$$\frac{\partial \mathbf{s}(t)}{\partial t} = \mathbf{v}(\mathbf{s}(t), t)$$

Occupancy Flow



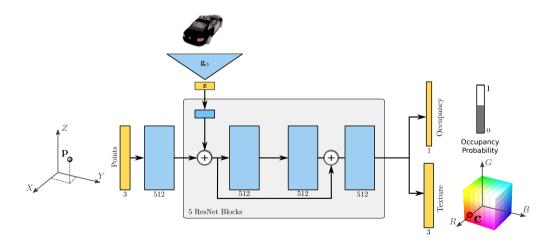
Results



 $\blacktriangleright \ \ \mbox{No correspondences needed} \Rightarrow \mbox{implicitly established by our model!}$

Can we **learn** implicit representations **from images**?

Architecture

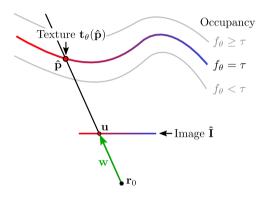


Forward Pass (Rendering)

Differentiable Volumetric Rendering

Forward Pass:

- ► For all pixels **u**
- Find surface point $\hat{\mathbf{p}}$ along ray \mathbf{w} via ray marching and root finding
- ightharpoonup Evaluate texture field $\mathbf{t}_{\theta}(\hat{\mathbf{p}})$ at $\hat{\mathbf{p}}$
- ► Insert color $\mathbf{t}_{\theta}(\hat{\mathbf{p}})$ at pixel \mathbf{u}



Backward Pass

(Differentiation)

Differentiable Volumetric Rendering

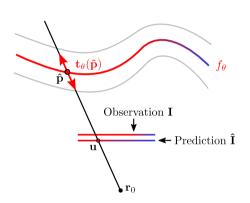
Backward Pass:

- ► Image Observation I
- $lackbox{Loss} \mathcal{L}(\mathbf{\hat{I}}, \mathbf{I}) = \sum_{\mathbf{u}} \|\mathbf{\hat{I}_u} \mathbf{I_u}\|$
- ► Gradient of loss function:

$$\begin{array}{lcl} \frac{\partial \mathcal{L}}{\partial \theta} & = & \displaystyle \sum_{\mathbf{u}} \frac{\partial \mathcal{L}}{\partial \mathbf{\hat{I}_u}} \cdot \frac{\partial \mathbf{\hat{I}_u}}{\partial \theta} \\ \\ \frac{\partial \mathbf{\hat{I}_u}}{\partial \theta} & = & \displaystyle \frac{\partial \mathbf{t_{\theta}(\hat{p})}}{\partial \theta} + \frac{\partial \mathbf{t_{\theta}(\hat{p})}}{\partial \hat{p}} \cdot \frac{\partial \hat{\mathbf{p}}}{\partial \theta} \end{array}$$

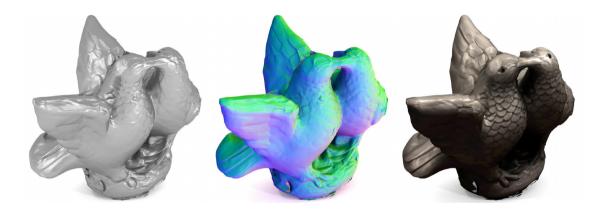
▶ Differentiation of $f_{\theta}(\hat{\mathbf{p}}) = \tau$ yields:

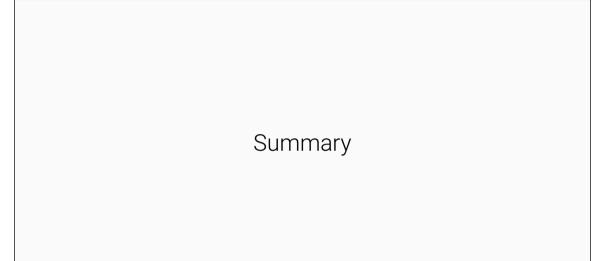
$$\frac{\partial \hat{\mathbf{p}}}{\partial \theta} = -\mathbf{w} \left(\frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \mathbf{w} \right)^{-1} \frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \theta}$$



⇒ Analytic solution and no need for storing intermediate results

Results





Summary

Neural Implicit Models:

- ► Effective output representation for shape, appearance, material, motion, etc.
- ► No discretization, model arbitrary topology
- ► Can be efficiently learned using 2D supervision
- ► Many applications: reconstruction, view synthesis, segmentation, etc.

Challenges:

- ► Geometry must be extracted in post-processing step (1-3 sec for ONet)
- ► Extension to 4D not straightforward (curse of dimensionality)
- ► Fully connected architecture and global condition lead to oversmooth results
- ► Promising: Local features (ConvONet, PiFU), Better input encoding (NeRF)

Thank you!

http://autonomousvision.github.io

