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Understanding the world via end-to-end learning?

Our universe:
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around a room with a young boy is holding a a toilet with a seat upina

a woman holding a teddy bear in front of a mirror

. bathroom
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An embodied learning recipe for
scene understanding?

get state s
get reward r

understanding



Which end-to-end task should we use?

Model-free algorithms: Model-based algorithms:
predict future rewards predict future observations



Which end-to-end task should we use?

Model-free algorithms:
predict future rewards



End-to-end training

network architecture

test error (cm)

softmax + feature points (ours) | 130 £ 0.73
softmax + fully connected layer | 2.59 £+ 1.19
fully connected layer 475 + 2.29
max-pooling + fully connected 371 £ 1.73

Meeussen et al. (WG)

Levine*, Finn*, Darrell, Abbeel. End-to-End Training of Deep Visuomotor Policies.

shape sorting cube

success rate

pose prediction
pose features

0%
- 70.4%

end-to-end training | 96.3%




QT-Opt: robotic RL at scale
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Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan,
Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-

Based Robotic Manipulation Skills
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Grasping with QT-Opt
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» Q-function network
with 1.2M parameters

» The only grasp-
specific feature is the
reward (1 if grasped)

Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan,
Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision- 10
Based Robotic Manipulation Skills



Emergent grasping strategies
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Learning on the job

training “on the job”

just keep training!

no human effort
required
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Julian, Levine, Finn, Hausman. Efficient Policy Adaptation for End-to-End Vision-Based Robotic Manipulation.



Learning on the job

Pretraining
Task

Fine-Tuning Task
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about 4 hours
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Julian, Levine, Finn, Hausman. Efficient Policy Adaptation for End-to-End Vision-Based Robotic Manipulation.
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Grasping provides supervision

pre-grasp scene grasped object post-grasp scene

Jang*, Devin*, Vanhoucke, Levine. Grasp2Vec: Learning Object Representations from Self-Superivsed Grasping. CoRL 2018.
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Representation learning from grasping

pre-grasp scene post-grasp scene grasped object

Jang*, Devin*, Vanhoucke, Levine. Grasp2Vec: Learning Object Representations from Self-Superivsed Grasping. CoRL 2018.



Training with contrastive loss

spatial feature map
AN

embedding

contrastive
lOss

Jang*, Devin*, Vanhoucke, Levine. Grasp2Vec: Learning Object Representations from Self-Superivsed Grasping. CoRL 2018.




What can we do with the learned representation?
Object-specific grasping

Jang*, Devin*, Vanhoucke, Levine. Grasp2Vec: Learning Object Representations from Self-Superivsed Grasping. CoRL 2018.



What can we do with the learned representation?
Object-specific grasping

Beats frue labels!

Object-Conditioned Grasping Success
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Jang*, Devin*, Vanhoucke, Levine. Grasp2Vec: Learning Object Representations from Self-Superivsed Grasping. CoRL 2018.



What can we do with the learned representation?

Fully self-supervised localization

Jang*, Devin*, Vanhoucke, Levine. Grasp2Vec: Learning Object Representations from Self-Superivsed Grasping. CoRL 2018.



Can we learn to understand open-world scenes?
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Kahn, Abbeel, Levine. BADGR: An Autonomous Self-Supervised Learning-Based Navigation System.



Navigational affordances

SLAM+P (geometry-based policy) BADGR (ours)

baseline method our method

Kahn, Abbeel, Levine. BADGR: An Autonomous Self-Supervised Learning-Based Navigation System.

» Learns a kind of
“navigational common
sense” from experience

» Some obstacles (e.g.,
grass) are traversable

» Concrete paths are good
for avoiding bumpiness

24



Which end-to-end task should we use?

Model-based algorithms:
predict future observations



Learning to predict the future

big dataset
from past
interaction

unlabeled video
experience

occasionally
get more data

train for many epochs

Finn, Levine. Deep Visual Foresight for Planning Robot Motion.
Ebert, Finn, Lee, Levine. Self-Supervised Visual Planning with Temporal Skip Connections.

Lee, Zhang, Ebert, Abbeel, Finn, Levine. Stochastic Adversarial Video Prediction.



Collect data by playing with objects




Learn to predict the future
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Example execution

Ebert, Finn, Lee, Levine. Self-Supervised Visual Planning with Temporal Skip Connections.



Model-based RL with improvised tool use

Training Time
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Apply best action
to robot

Xie, Ebert, Levine, Finn. Improvisation through Physical Understanding: Using Novel Objects as Tools with Visual Foresight. RSS ‘19



Model-based RL with improvised tool use

Xie, Ebert, Levine, Finn. Improvisation through Physical Understanding: Using Novel Objects as Tools with Visual Foresight. RSS ‘19



Model-based RL with improvised tool use

Xie, Ebert, Levine, Finn. Improvisation through Physical Understanding: Using Novel Objects as Tools with Visual Foresight. RSS ‘19



An embodied learning recipe for scene understanding?

get state s
get reward r
4 A ’

understanding

choose action a
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Al http://rail.eecs.berkeley.edu

http://rail.eecs.berkeley.edu/code.html



http://rail.eecs.berkeley.edu/
http://rail.eecs.berkeley.edu/code.html

