

SuperGlue: Learning Feature Matching with Graph Neural Networks

Paul-Edouard Sarlin¹ Tomasz Malisiewicz² Daniel DeTone² Andrew Rabinovich²

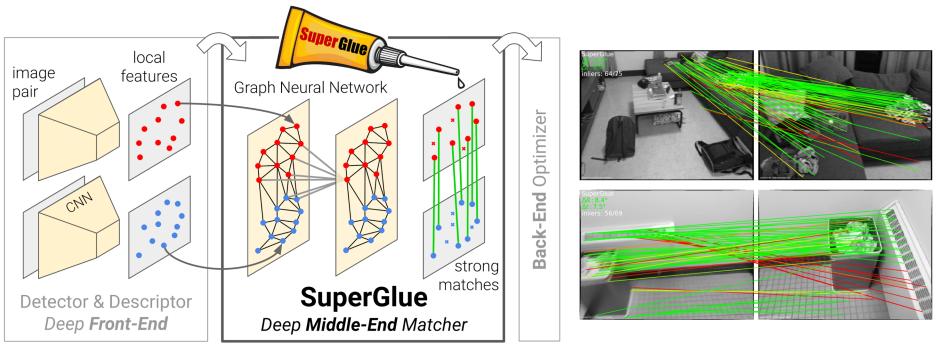
Feature matching is ubiquitous

- 3D reconstruction
- Visual localization
- SLAM
- Place recognition

[Image Matching Workshop 2020]

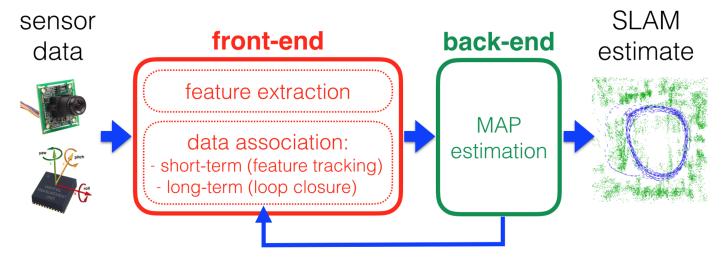
[Google VPS]

SuperGlue = Graph Neural Nets + Optimal Transport



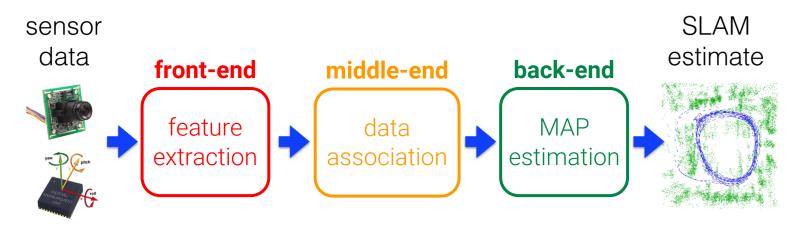
- Extreme wide-baseline image pairs in real-time on GPU
- State-of-the-art indoor+outdoor matching with SIFT & SuperPoint

Visual SLAM



- Front-end: images to constraints
 - Recent works: deep learning for feature extraction
 - \rightarrow Convolutional Nets!
- **Back-end**: optimize pose and 3D structure

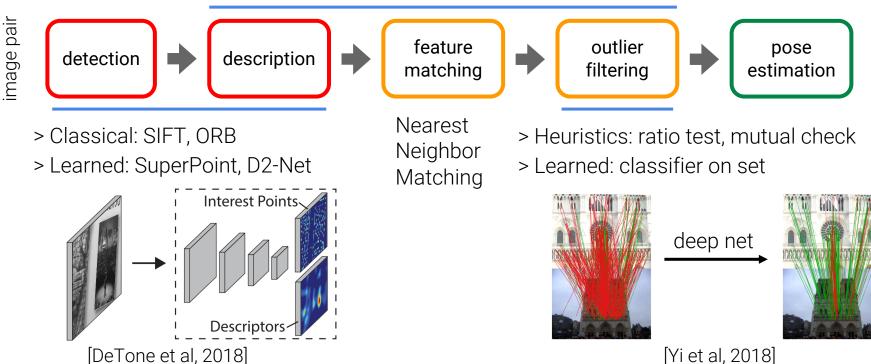
A middle-end



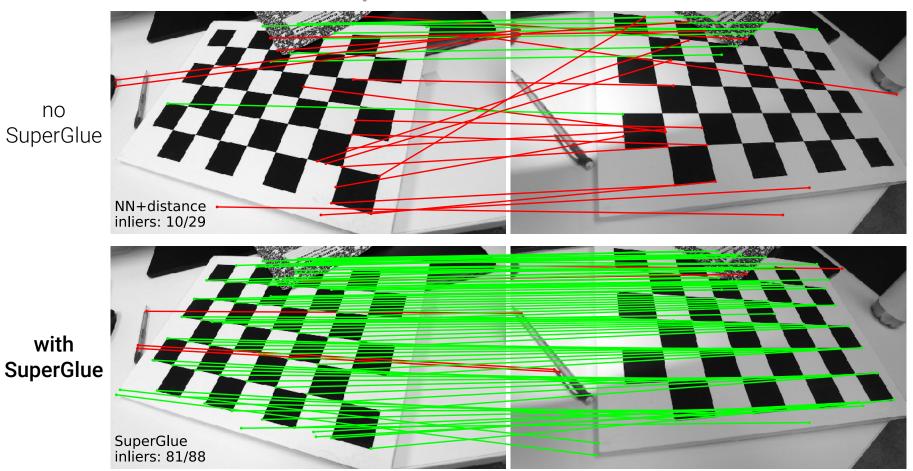
- Our position: **learn** the data association!
- We propose a new middle-end: SuperGlue
- 2D-to-2D feature matching

Super Glue

SuperGlue: context aggregation + matching + filtering



The importance of context

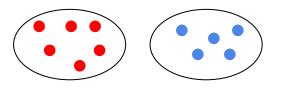


Problem formulation

Inputs

Images A and B

- 2 sets of M, N local features
 - Keypoints: $\mathbf{p}_i := (x, y, c)_i$
 - Coordinates (x, y)
 - Confidence C
 - \circ Visual descriptors: \mathbf{d}_i

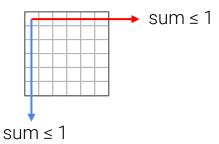


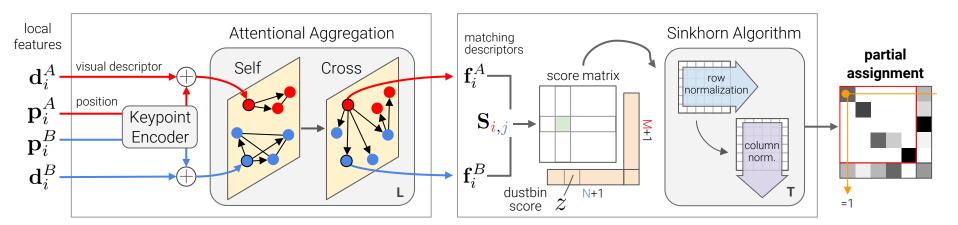
Single a match per keypoint

Outputs

- + occlusion and noise
- \rightarrow a soft partial assignment:

$$\mathbf{P} \in [0, 1]^{M \times N}$$





A Graph Neural Network with attention

Solving a partial assignment problem

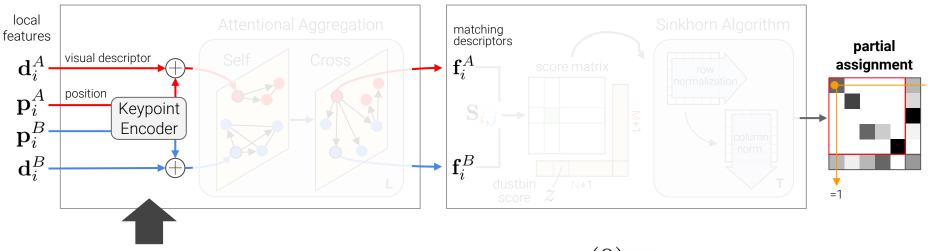
Encodes contextual cues & priors

Reasons about the 3D scene

Differentiable **solver**

Enforces the assignment constraints = **domain knowledge**

Optimal Matching Layer



- Initial representation for each keypoints i : $^{(0)}\mathbf{x}_i$
- Combines visual appearance and position with an MLP:

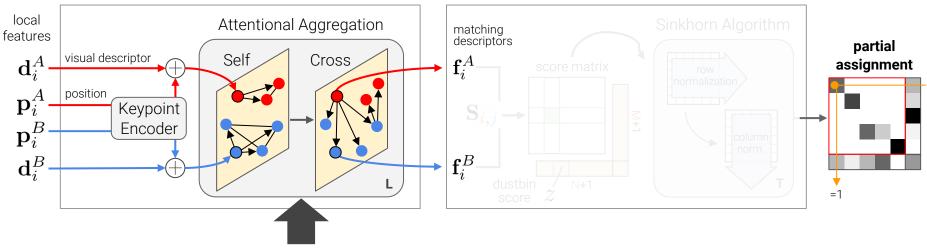
$$^{(0)}\mathbf{x}_{i} = \mathbf{d}_{i} + \mathrm{MLP}\left(\mathbf{p}_{i}\right)$$

Multi-Layer Perceptron

Optimal Matching Layer

 $^{(\ell)}\mathbf{x}_{i}^{A}$

 $\rightarrow (\ell+1) \mathbf{x}_{i}^{A}$

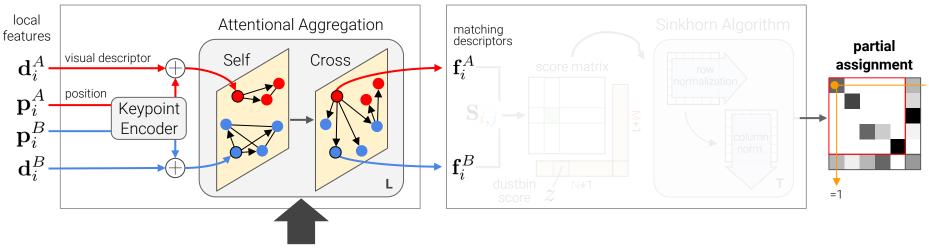


Update the representation based on other keypoints:

- in the same image: "**self**" edges
- in the other image: "cross" edges

 \rightarrow A complete **graph** with two types of edges

Optimal Matching Layer



Update the representation using a Message Passing Neural Network

$$^{(\ell+1)} \mathbf{x}_{i}^{A} = {}^{(\ell)} \mathbf{x}_{i}^{A} + \mathrm{MLP}\left(\left[{}^{(\ell)} \mathbf{x}_{i}^{A} \mid \mid \mathbf{m}_{\mathcal{E} \to i} \right] \right)$$
the message ______

Attentional Aggregation

- Compute the message $\ \mathbf{M}_{\mathcal{E}
 ightarrow i}$ using self and cross attention
- Soft database retrieval: query \mathbf{q}_i , key \mathbf{k}_j , and value \mathbf{v}_j

$$\mathbf{m}_{\mathcal{E}\to i} = \sum_{j:(i,j)\in\mathcal{E}} \alpha_{ij} \mathbf{v}_j \qquad \mathbf{q}_i = \mathbf{W}_1 \stackrel{(\ell)}{=} \mathbf{x}_i + \mathbf{b}_1$$
$$\begin{bmatrix} \mathbf{k}_j \\ \mathbf{v}_j \end{bmatrix} = \begin{bmatrix} \mathbf{W}_2 \\ \mathbf{W}_3 \end{bmatrix} \stackrel{(\ell)}{=} \mathbf{x}_j + \begin{bmatrix} \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix}$$
$$\mathbf{x}_i = [\text{tile, position (70, 100)}] \qquad \mathbf{v}_i = [\text{tile, pos. (80, 110)}]$$
$$\mathbf{v}_i = [\text{corner, pos. (60, 90)}]$$
$$\mathbf{v}_i = [\text{grid, pos. (400, 600)}]$$

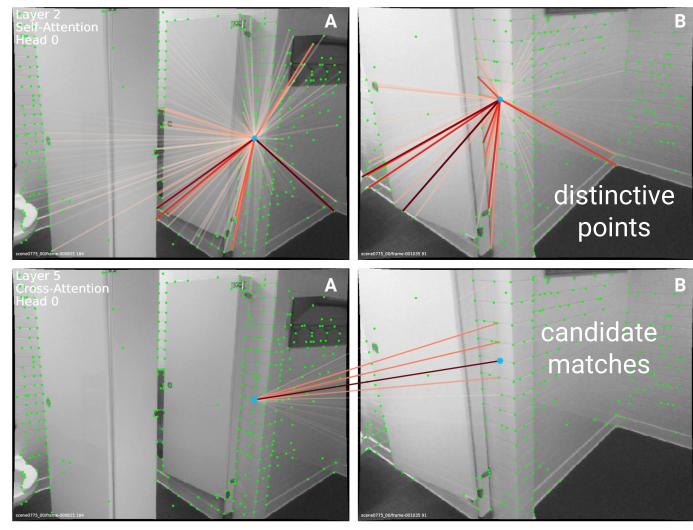
Self-attention

= intra-image information flow

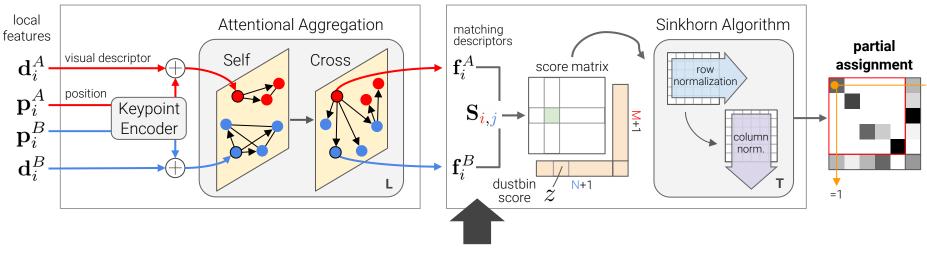
Cross-attention

= inter-image

Attention builds a **soft**, **dynamic**, **sparse graph**

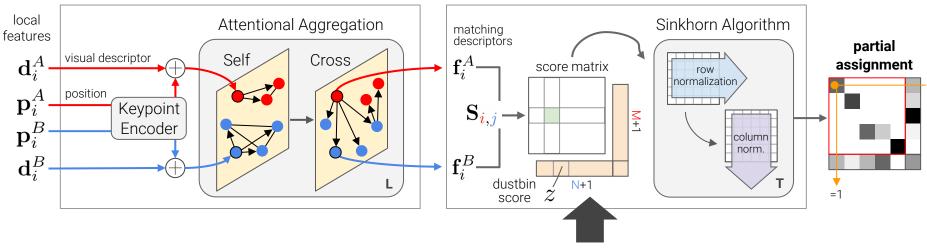


Optimal Matching Layer



Compute a score matrix $\mathbf{S} \in \mathbb{R}^{M imes N}$ $\mathbf{f}_{i}^{A} = \mathbf{W} \cdot {}^{(L)}\mathbf{x}_{i}^{A} + \mathbf{b}$ $\mathbf{S}_{i,j} = \langle \mathbf{f}_{i}^{A}, \mathbf{f}_{j}^{B} \rangle$ for all matches:

Optimal Matching Layer

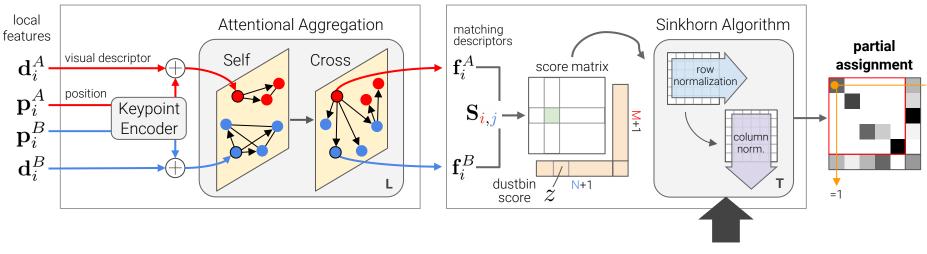


- Occlusion and noise: unmatched keypoints are assigned to a **dustbin**
- Augment the scores with a learnable dustbin score ${\mathcal Z}$

$$\bar{\mathbf{S}}_{i,N+1} = \bar{\mathbf{S}}_{M+1,j} = \bar{\mathbf{S}}_{M+1,N+1} = z \in \mathbb{R}$$

Optimal Matching Layer

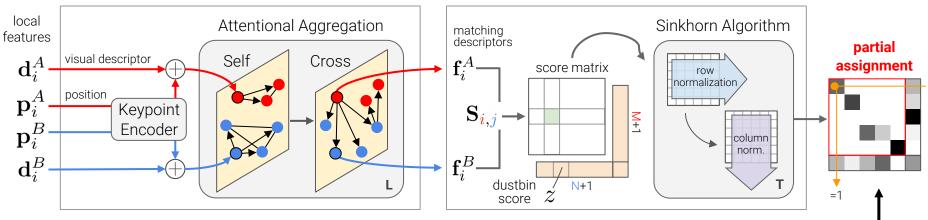
i, j



- Compute the assignment $ar{\mathbf{P}}$ that maximizes $\sum ar{\mathbf{S}}_{i,j}ar{\mathbf{P}}_{i,j}$
- Solve an **optimal transport** problem
- With the **Sinkhorn algorithm**: differentiable & soft Hungarian algorithm

[Sinkhorn & Knopp, 1967]

Optimal Matching Layer

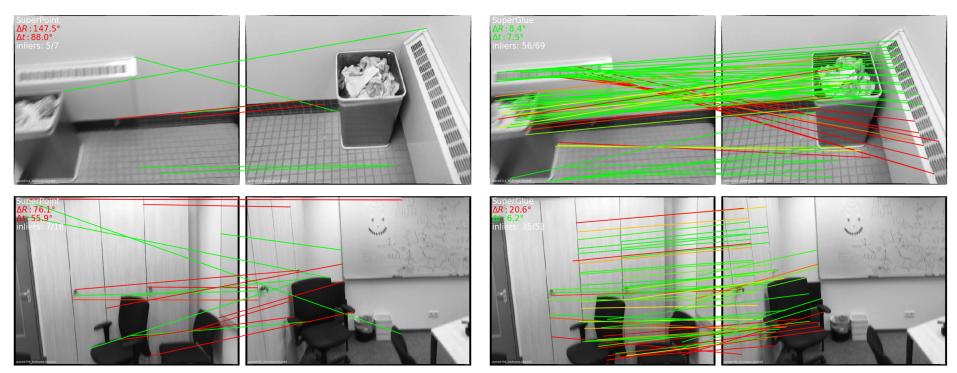


- Compute ground truth correspondences from pose and depth
- Find which keypoints should be **unmatched**
- Loss: maximize the log-likelihood $\, ar{\mathbf{P}}_{i,j} \,$ of the GT cells

Results: indoor - ScanNet

SuperPoint + NN + heuristics

SuperPoint + SuperGlue

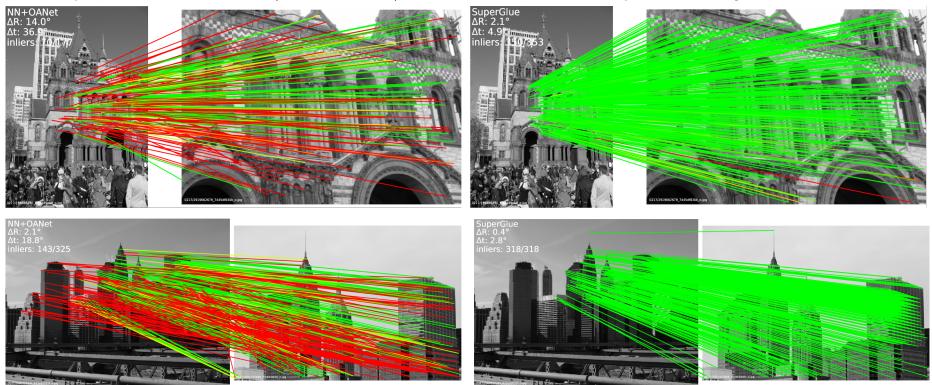


SuperGlue: more correct matches and fewer mismatches

Results: outdoor - SfM

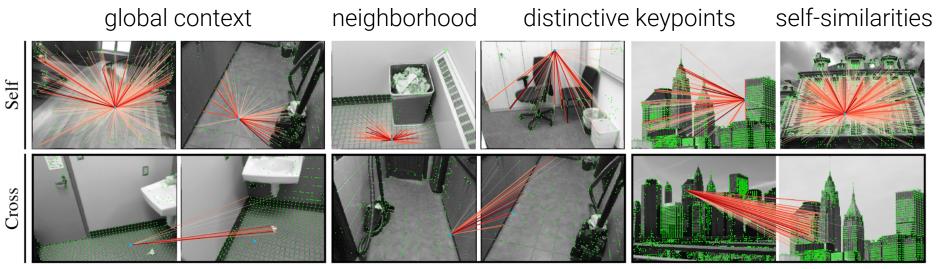
SuperPoint + NN + OA-Net (inlier classifier)

SuperPoint + SuperGlue



SuperGlue: more correct matches and fewer mismatches

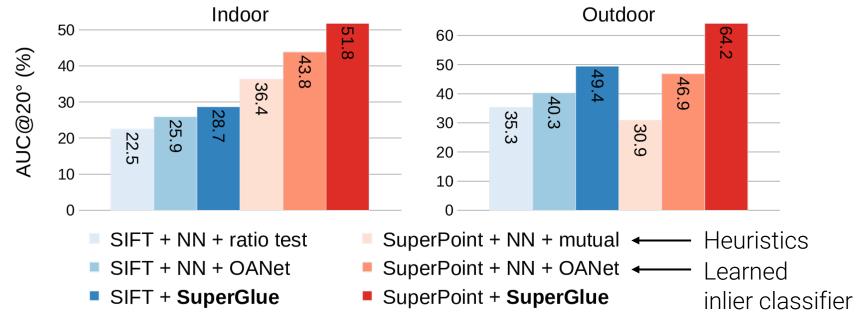
Results: attention patterns



match candidates

Flexibility of attention → **diversity of patterns**

Evaluation



SuperGlue yields large improvements in all cases

SuperGlue @ CVPR 2020

First place in the following competitions:

- Image matching challenge <u>vision.uvic.ca/image-matching-challenge</u>

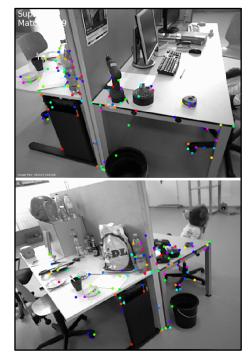
www.visuallocalization.net

- Local features for visual localization
- Visual localization for handheld devices

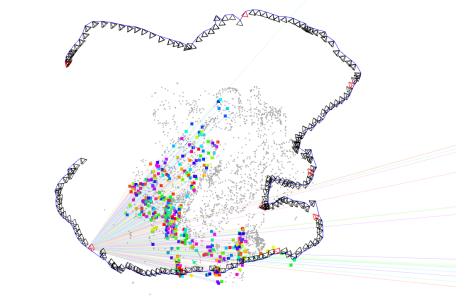
SuperGlue

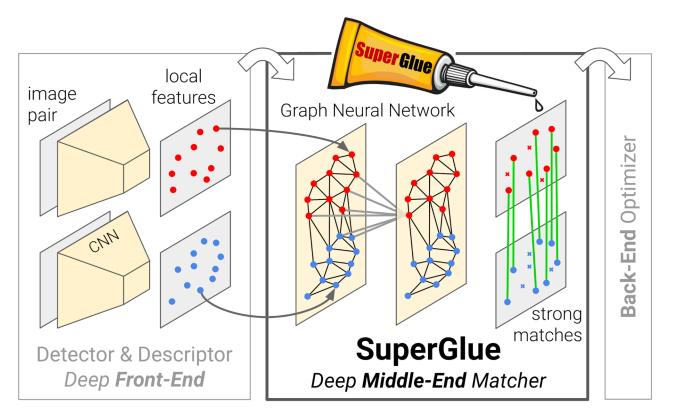
Learning Feature Matching with Graph Neural Networks

A major step towards end-to-end deep SLAM & SfM



psarlin.com/superglue





Thank you psarlin.com/superglue