3D vision: subjunctives

D.A. Forsyth

OR: "Go to the ant...; consider its ways and be wise"

What does vision do? (traditional)

• Recognition

- instances (who is this?)
- allocate pictures of objects to categories (classification)
- find location of objects in pictures (detection)
- produce descriptions of objects (attributes/primitives)
- describe pictures (captioning)
- Reconstruction
 - SLAM
 - point clouds
 - meshes
 - voxel reconstructions
 - geometric primitives
 - implicit surfaces, generalized cylinders, superquadrics, etc.
- Lots of evidence these threads interact
- Lots of evidence that these activities have created value

What are we really good at?

• Classification

- eg image classification; voxel labelling; detection (== lots of classification)
- in the presence of huge quantities of labelled data

• Regression

- eg predicting boxes; depth; voxels; etc.
- in the presence of huge quantities of labelled data
- (Some kinds of) Geometric reasoning
 - SFM writ large
- Our actions are driven by our tools (OADOT)

What are we bad at?

- (Almost) Unsupervised learning of visual representations
- Controlling the bias of representations for advantage

- Will reinforcement learning save us?
 - NO

OADOT - Recognition

- Categories clearly don't exist in any canonical sense
 - and any instance can belong to many different categories, etc.
 - be very careful of:
 - members of a category share properties or are alike
 - what properties? in what sense alike?
- And so *MUST* be the product of unsupervised learning
- Categories are useful intermediaries
 - it is helpful to group instances together in clusters that
 - improve prediction
 - dog-a will very likely behave in the same way as dog-b
 - improve communication
 - it's easier to talk about dogs than dog-a, dog-b

OADOT - Reconstruction

- Reconstructions don't exist in any canonical sense, either
 - there really isn't any single 3D representation cause there can't be
 - there is no evidence that *any* visual task *requires* a 3D rep'n
 - Q: how can you determine *from outside* whether an agent has one?
- 3D representations are intermediaries
 - and useful to the extent they mediate
 - eg: point clouds, meshes
 - renderable models; metric info; maps
- What task does this representation facilitate?
 - what info does the task need?

What problems to focus on?

- Improved geometric models from images is always good
 - there's a reason to care, etc.
- Orphan problems
 - The space we can't see
 - How do I know there is a 3D world?
- Functional problems
 - Where am I?
 - How do I get home?
 - What could I do?
 - What might happen?

The space we can't see

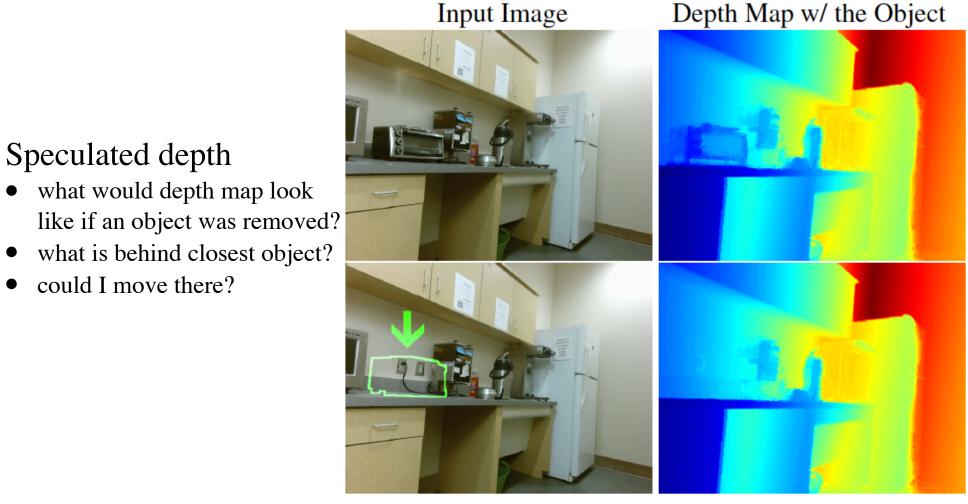
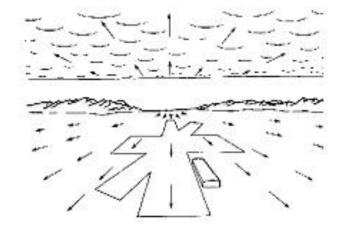


Image w/o the Object

Target Output

How do I know there is a 3D world?

- and how to act in it?
 - (without invoking RL)

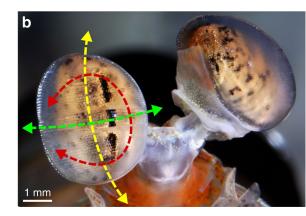


- Various answers:
 - 3D means textures are more uniform (Fouhey et al 15)
 - the parametric forms of flow fields are more easily explained (Gibson, 50)
- Do I need to know there is a 3D world?

Where am I?

- This doesn't get sufficient credit as 3D
 - early work (im2gps, etc; Hays+Efros 2008)
 - non-par regression (matching)
 - NOT the same as building a map

- Short scales, visually simple worlds are hard
 - get different visual sensors and use them well
 - Mantis shrimp (Daly et al 2016)



How do I get home?

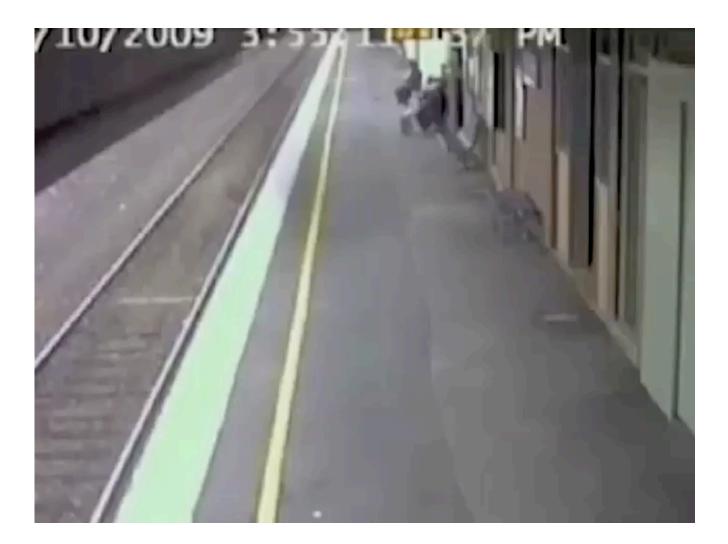
- Desert ants can forage, then go home directly
 - They're not doing SLAM! (scale)
 - Cues:
 - dead reckoning (count leg movements)
 - visual waypoints
 - polarization based sun compass
- Behavior can be explained *without* a map
 - multiple cues each produce a "go-home" vector
 - weighted combination (Hoinville+Wehner, 2018)
 - can be imitated (Dupeyroux et al 2019)
- And they can go home backwards

What can I do?

• Path planning is not about geometric detail

- which creates computational complexity
- RRT methods; nearest neighbor methods; = strategies to duck detail
 - the key is a test: will this result in collision?
- So why recover detail from images, rather than be able to answer query?
- We should recover geometric affordances of objects
 - what can be done to this, and where?
 - this likely isn't inherited from category
- Does a clam shell have a "hit here" tag?

What might happen?



Conclusions

- What we do is shaped too much by our tools
 - collect dataset regress repeat
- 3D representations are mostly intermediaries
 - the ones we use should be task appropriate, not generic
- Appealing problems:
 - The space we can't see
 - How do I know there is a 3D world?
 - Where am I?
 - How do I get home?
 - What could I do?
 - What might happen?

Structure

- traditional view:
 - recognition
 - instance: useful for some special cases
 - categories: clearly don't exist in any canonical sense, but are very useful intermediaries
 - reconstruction
 - various geometric representations: typically intermediaries
 - lots of evidence of interaction
- What can we do?
 - regression
 - classification
 - both really well, in the presence of large, labelled datasets

Structure

• what should vision do?

- inform action
 - pure reinforcement learning is ridiculous, so representations are needed
- what to recover?
 - current geometric representations are inconvenient devices
- perhaps
 - break out representations by the problems they can be used to solve
 - exploration
 - going home
 - interaction
 - prediction