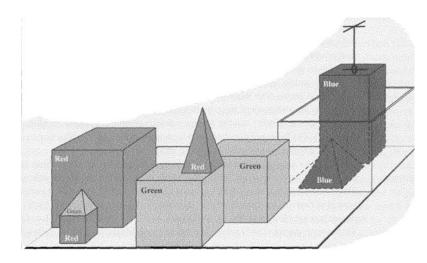
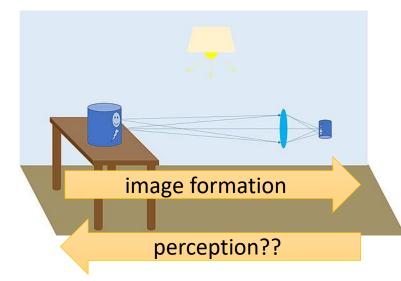
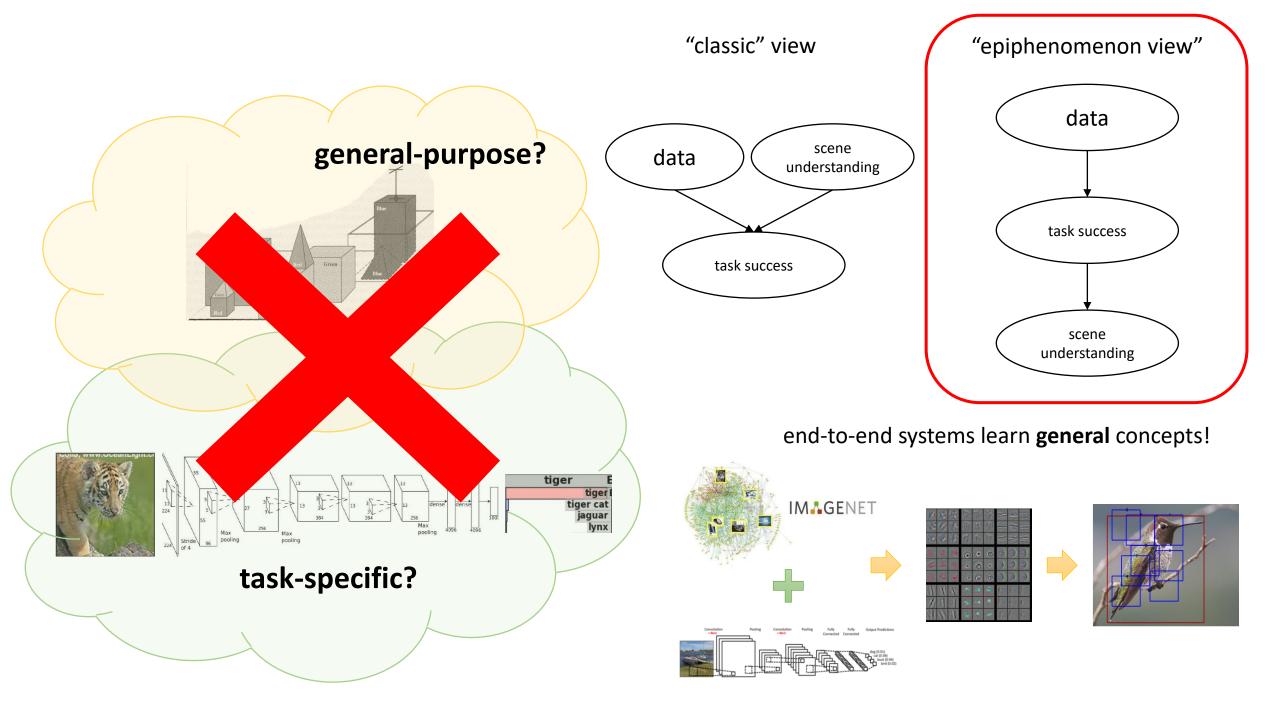
Embodied Implicit Scene Understanding

Sergey Levine UC Berkeley









Understanding the world via end-to-end learning?

Our universe:

Image captioning "universe":

remotes

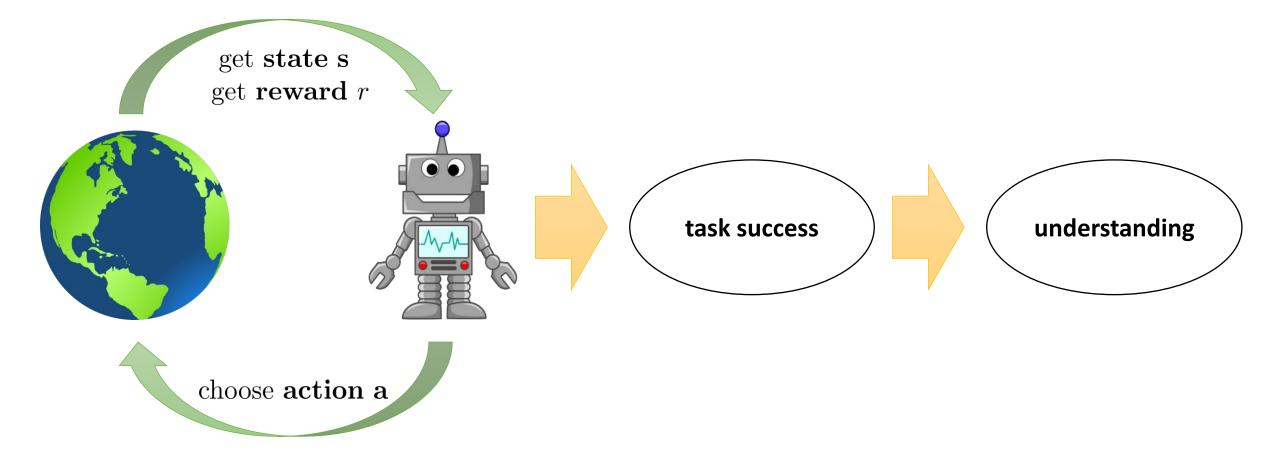
logprob: -9.17

a young boy is holding a baseball bat logprob: -7.61

a toilet with a seat up in a bathroom logprob: -13.44

a woman holding a teddy bear in front of a mirror logprob: -9.65

An **embodied learning** recipe for scene understanding?



Which end-to-end task should we use?

Model-free algorithms: predict future *rewards*

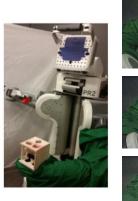
Model-based algorithms: predict future *observations*

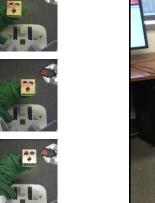
Which end-to-end task should we use?

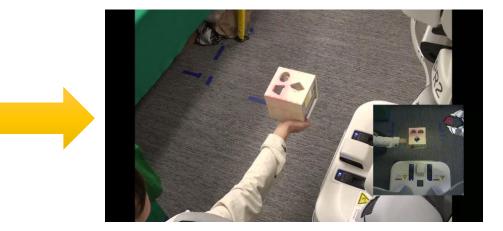
Model-free algorithms: predict future *rewards*

Model-based algorithms: predict future *observations*

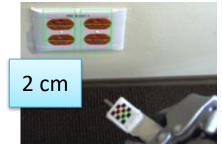
End-to-end training







network architecture	test error (cm)
softmax + feature points (ours)	1.30 ± 0.73
softmax + fully connected layer	2.59 ± 1.19
fully connected layer	4.75 ± 2.29
max-pooling + fully connected	3.71 ± 1.73

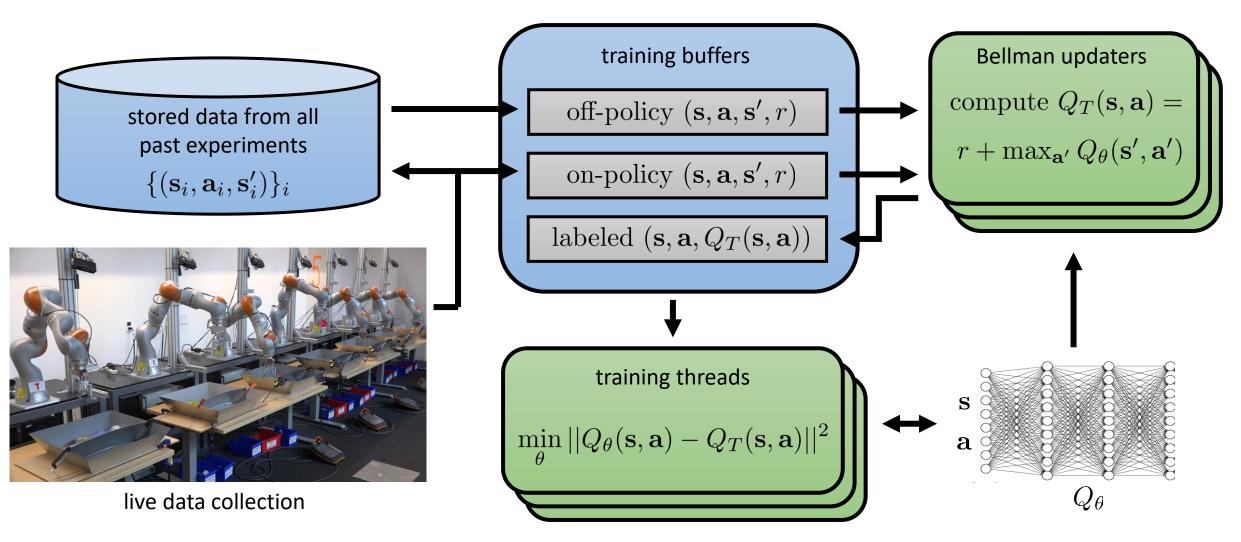


Meeussen et al. (WG)

shape sorting cube	success rate
pose prediction	0%
pose features	70.4%
end-to-end training	96.3%

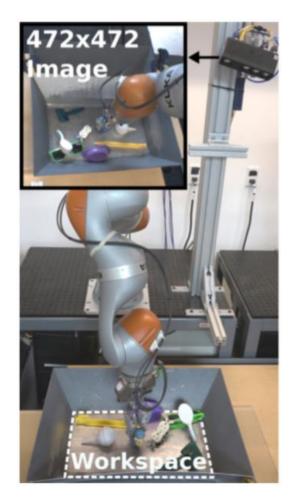
Levine*, Finn*, Darrell, Abbeel. End-to-End Training of Deep Visuomotor Policies.

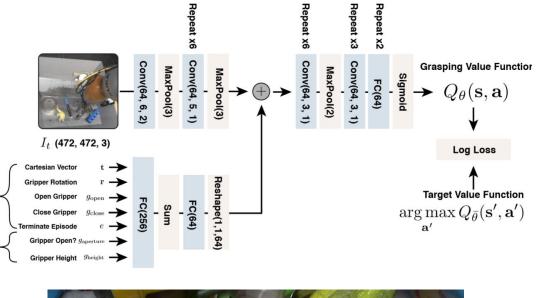
QT-Opt: robotic RL at scale



Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan, Vanhoucke, Levine. **QT-Opt: Scalable Deep Reinforcement Learning of Vision-Based Robotic Manipulation Skills**

Grasping with QT-Opt





- About 1000 training objects
- About 600k training grasp attempts
- Q-function network with 1.2M parameters
- The only graspspecific feature is the reward (1 if grasped)

Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan, Vanhoucke, Levine. **QT-Opt: Scalable Deep Reinforcement Learning of Vision-Based Robotic Manipulation Skills**

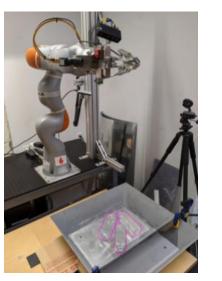
Emergent grasping strategies

96%

Learning on the job

training

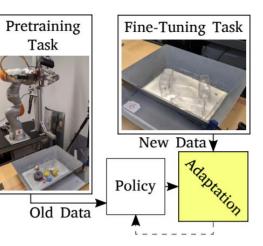
 \mathbf{S} a Q_{θ} "on the job"



49% success rate

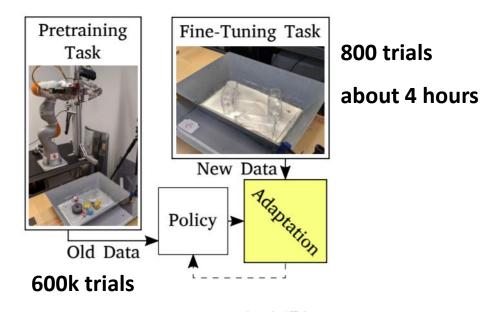
just keep training!

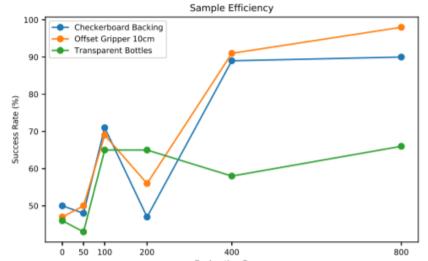
no human effort required



96% success rate

Learning on the job





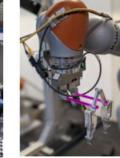
Transparent Bottles

Harsh Lighting

 $32\% \rightarrow 63\%$

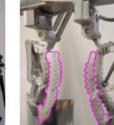
Checkerboard Backing

50% → 90% 75% → 93%

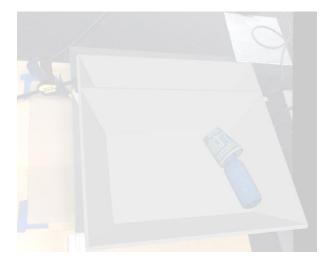


Offset Gripper 10cm

Exploration Grasps Julian, Levine, Finn, Hausman. Efficient Policy Adaptation for End-to-End Vision-Based Robotic Manipulation.

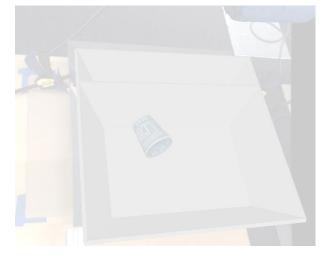


Extend Gripper 1cm



pre-grasp scene

grasped object



post-grasp scene

pre-grasp scene

grasped object

post-grasp scene



pre-grasp scene

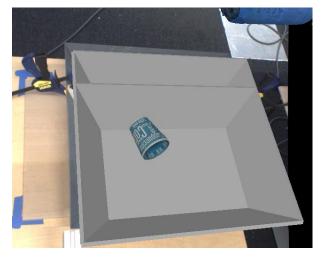
grasped object

post-grasp scene



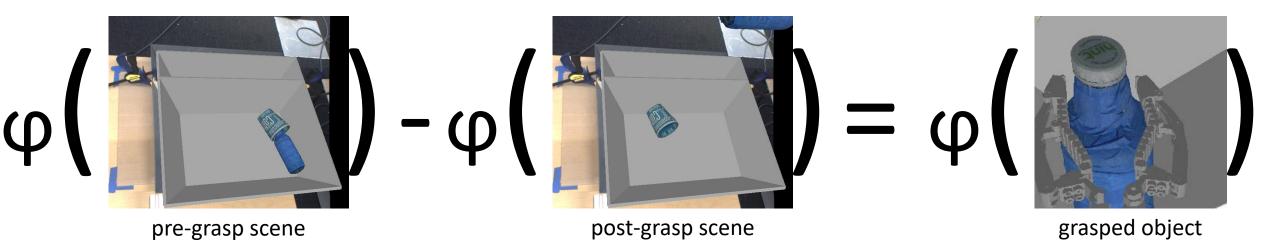
pre-grasp scene

grasped object

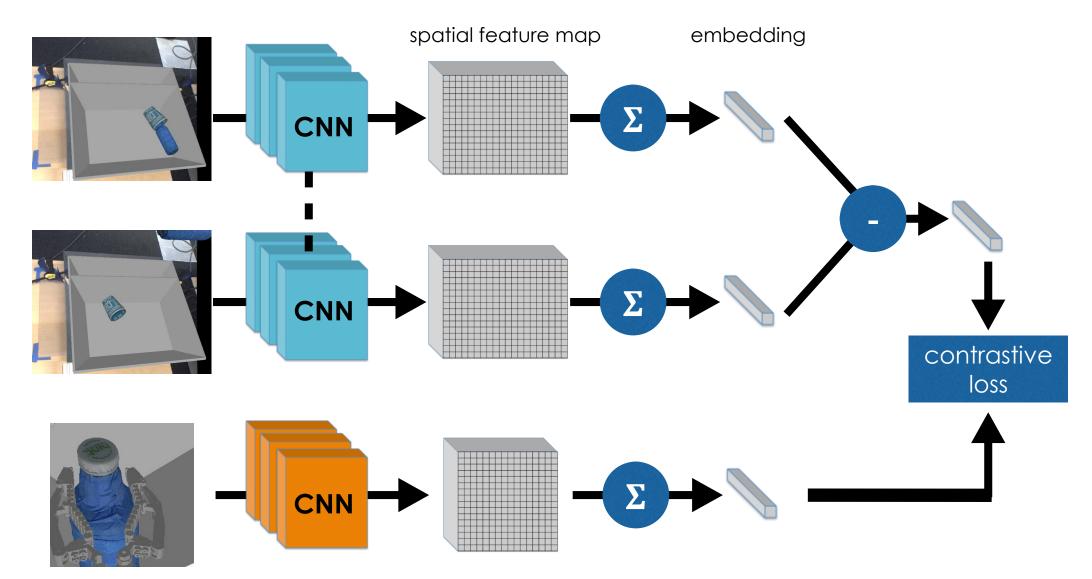


post-grasp scene

Representation learning from grasping



Training with contrastive loss

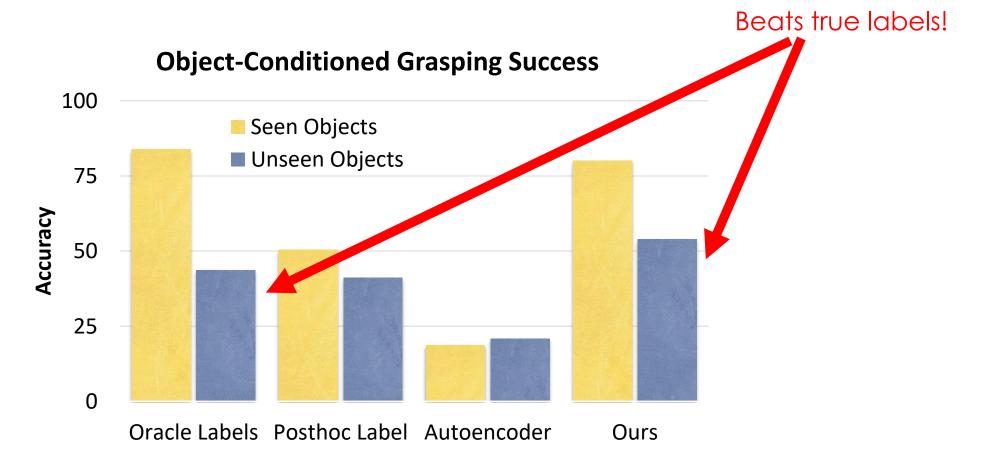


What can we do with the learned representation?

Object-specific grasping

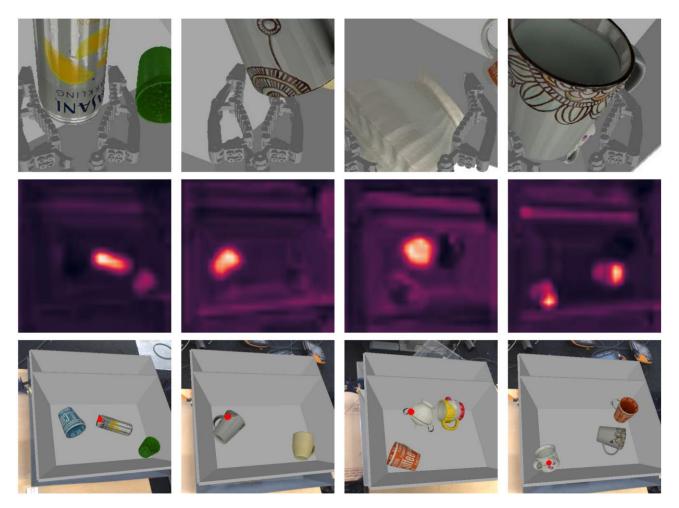
What can we do with the learned representation?

Object-specific grasping

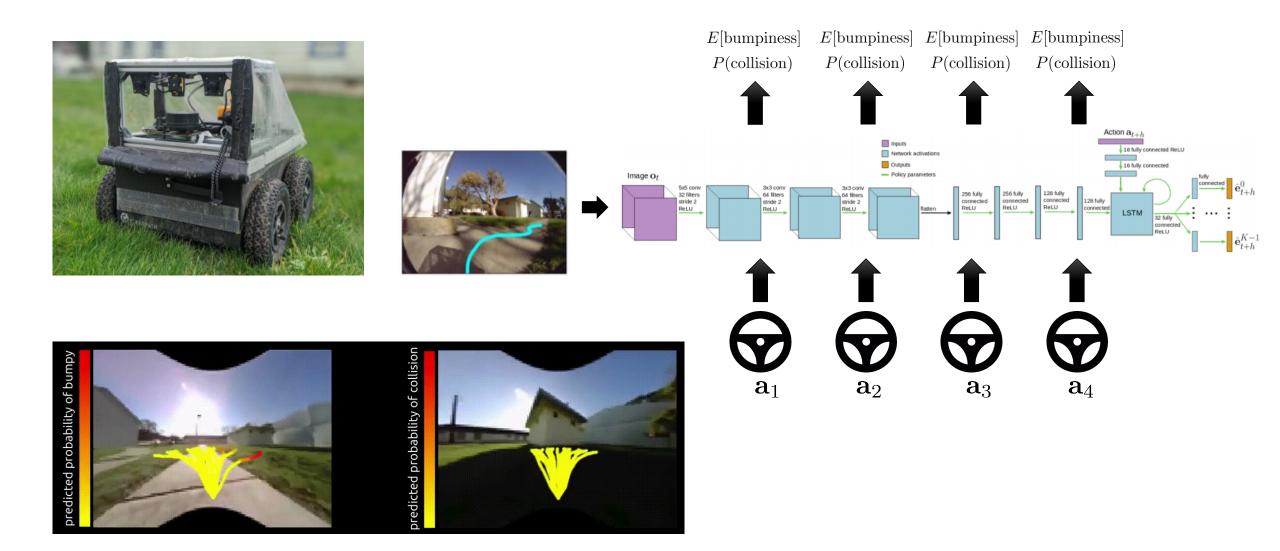


What can we do with the learned representation?

Fully self-supervised localization



Can we learn to understand open-world scenes?



Kahn, Abbeel, Levine. BADGR: An Autonomous Self-Supervised Learning-Based Navigation System.

Navigational affordances

baseline method

our method

Learns a kind of "navigational common sense" from experience

Some obstacles (e.g., grass) are traversable

Concrete paths are good for avoiding bumpiness

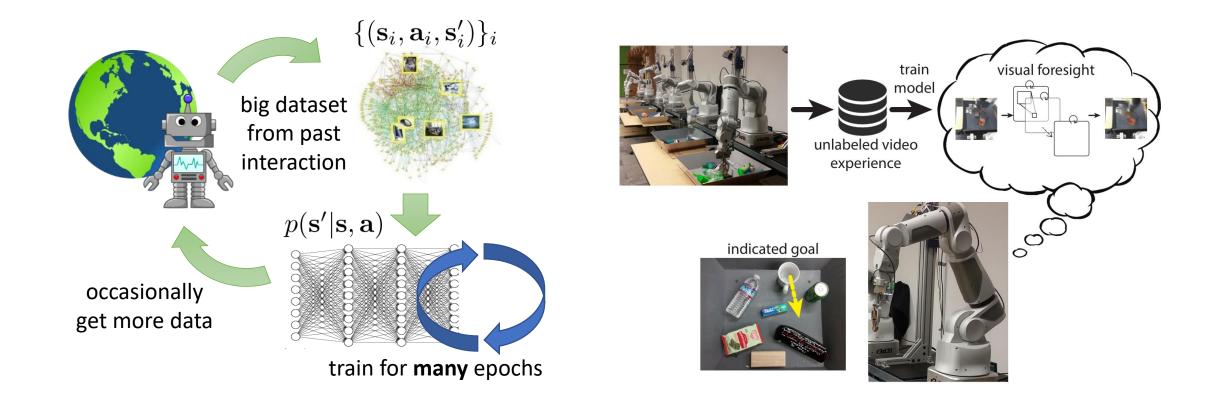
Kahn, Abbeel, Levine. BADGR: An Autonomous Self-Supervised Learning-Based Navigation System.

Which end-to-end task should we use?

Model-free algorithms: predict future *rewards*

Model-based algorithms: predict future *observations*

Learning to predict the future

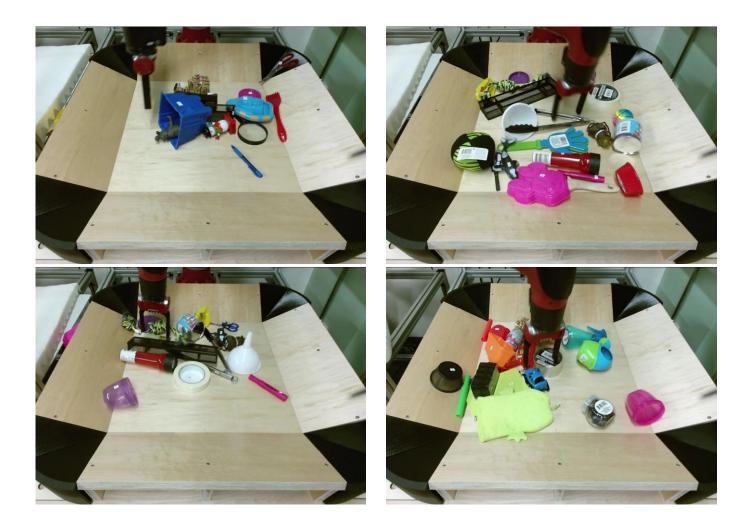


Finn, Levine. Deep Visual Foresight for Planning Robot Motion.

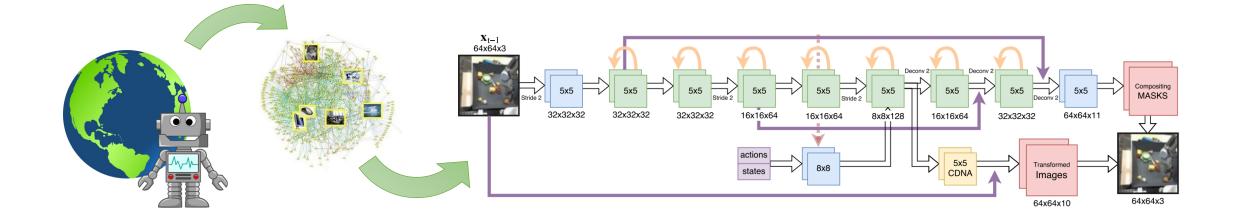
Ebert, Finn, Lee, Levine. Self-Supervised Visual Planning with Temporal Skip Connections.

Lee, Zhang, Ebert, Abbeel, Finn, Levine. Stochastic Adversarial Video Prediction.

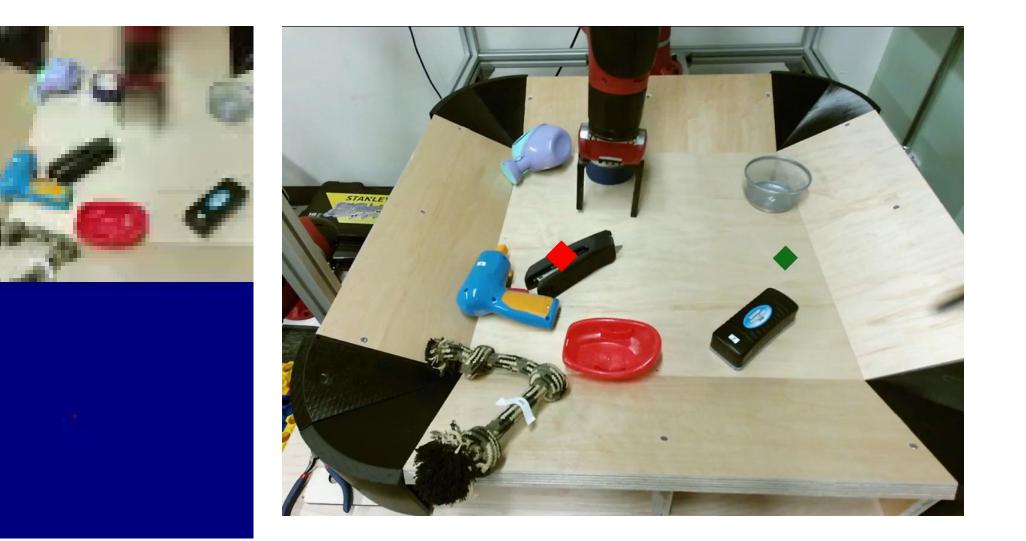
Collect data by playing with objects



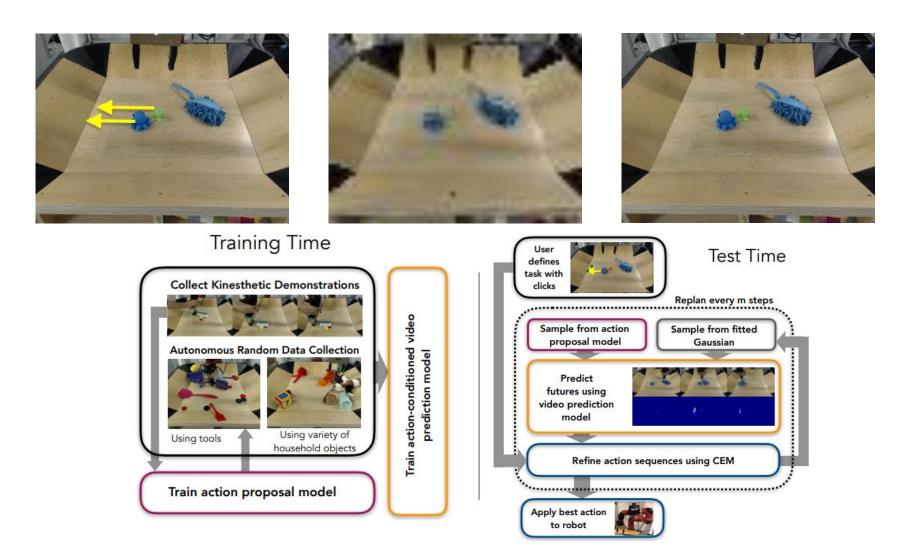
Learn to predict the future



Example execution

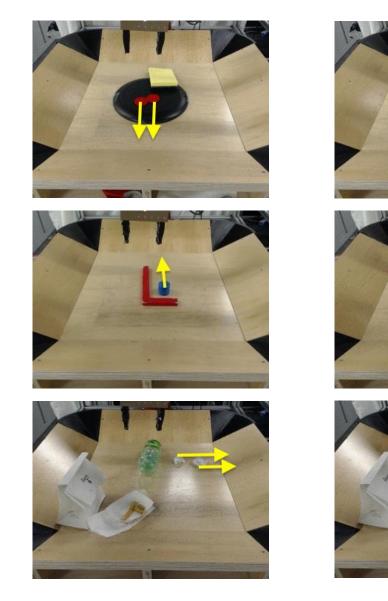


Model-based RL with improvised tool use



Xie, Ebert, Levine, Finn. Improvisation through Physical Understanding: Using Novel Objects as Tools with Visual Foresight. RSS '19

Model-based RL with improvised tool use

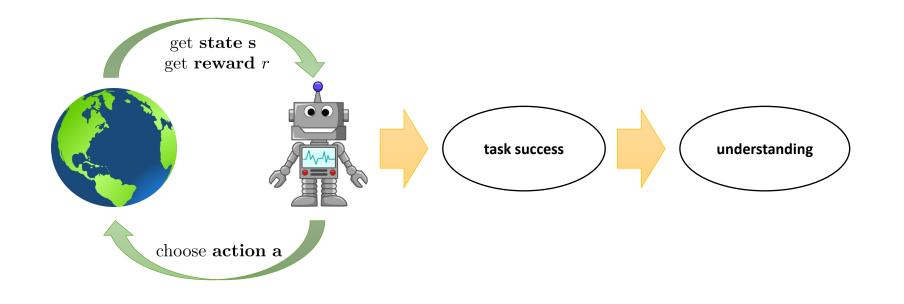


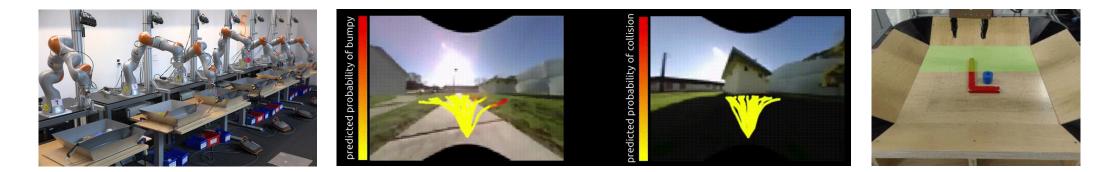
Model-based RL with improvised tool use



Xie, Ebert, Levine, Finn. Improvisation through Physical Understanding: Using Novel Objects as Tools with Visual Foresight. RSS '19

An embodied learning recipe for scene understanding?





RAIL Robotic AI & Learning Lab

website: <u>http://rail.eecs.berkeley.edu</u> source code: <u>http://rail.eecs.berkeley.edu/code.html</u>