

Interactive Gibson Environment: a Simulator for Embodied Visual Agents

Presenter: Fei XIa Stanford Vision and Learning Lab, Stanford University

iGibson

Team and collaborators

Learning Lab

Stanford Vision and

Fei-Fei Li phd Professor

Silvio Savarese PhD Professor

Roberto Martín-Martín PhD Postdoctoral Scholar

Shyamal Buch

PhD Student

Postdoctoral Scholar

PhD Student

Kent Vainio Undergraduate Research Assistant

Professor (Stanford)

Alexander Toshev PhD Research Scientist (Google Brain)

TingTing Dong Phd NEC Research Scientist (NEC)

William Shen PhD Student

PhD Student

Sanjana Srivastava PhD Student

Lyne Tchapmi PhD Student

Micael Tchapmi Visiting UG Scholar

Chengshu (Eric) Li

iGibson is a virtual environment

iGibson is a virtual environment

• to simulate robotic agents,

iGibson is a virtual environment

- to simulate robotic agents,
- with realistic virtual images,
- with multiple large environments reconstructed from real world houses,
- and realistic physics simulation

iGibson at a Glance

Features and characteristics

572 full buildings
211,000 m2
1400+ floors
10 partially interactive
1 fully interactive (+9 soon)

Physically Realistic Simulations of Active Agents

14 realistic models of robots Rigid body physics [Bullet] Navigation & manipulation Virtual reality for humans

Realistic Fully Interactive Environments to Explore Free

Real world object distribution 500+ surface materials Physical properties (mass, inertia...) Per interactive environment: - 30+ articulated objects - 200+ textured models

James J. Gibson, 1904-1979

An ecological and interactive view of perception and agency

"Ask not what's inside your head, but what your head's inside of."

[William W. Mace to summarize Gibson's Theories, 1977]

Our Goal:

Create an interactive environment where robotic agents can perform interactive tasks

Gibson v1

Real-world perception for embodied agents based on 3D reconstructed full environments

Gibson v1

Large database of 3D reconstructed large environments that maintain real-world distributions

ちゅうめ ひひんがじゅ むゆ ぎじ ひどの ヘリママト かわや ひょく む イータン ひょう ひょう ひょう ひょう しょう しょう しょう 1 P 3 4 6 6 135 S 30 S むずわ むずぎ かいら む む む ひ て や 57 w (M So Salo トトピカぼず むけね ごけ むどうける 039 Service Servic - Car セッシン むさ むさ ゆう む む むち や む む や じゅうちょう じゅうちゅう おいろう いちょう しょう しょう

572 full buildings. Real spaces, scanned with 3D scanners. 211,000 m2. 1400+ floors.

Gibson v1

A very useful simulation environment for the community

[A behavioral approach to visual navigation with graph localization networks, Chen et al., RSS19]

[Neural Autonomous Navigation with Riemannian Motion Policy, Meng et al., ICRA19]

[Scaling Local Control to Large-Scale Topological Navigation, Meng et al., 2019]

[Generalization through Simulation: Integrating Simulated and Real Data into Deep Reinforcement Learning for Vision-Based Autonomous Flight, Kang et al., ICRA19]

[Mid-Level Visual Representations Improve Generalization and Sample Efficiency for Learning Visuomotor Policies, Sax et al., 2018]

[Situational Fusion of Visual Representation for Visual Navigation, Shen et al., CVPR19]

[Learning Your Way Without Map or Compass: Panoramic Target Driven Visual Navigation, Watkins-Valls et al., 2019]

[Deep Visual MPC-Policy Learning for Navigation, Hirose et al., RAL2019]

The Need of a New Simulation Environment

iGibson: A realistic full environment with free interactions and visual realism

Simulator	Challenge	Physics Realism and Interaction Type	Changing Object State beyond poses	Visual Quality	Type of Environment	Speed vs. real- time*
Atari	visuo-motor coordination	videogame	yes	1990s graphic	videogame	2x
Dota2	multi-unit planning	videogame	yes	synthetic	videogame	N/A
Mujoco, Bullet	visuo-motor coordination (manipulation)	kinematic manipulation	no	synthetic	tabletop	30x
RLBench, Meta-world	meta-learning motion planning	kinematic manipulation	no	synthetic	tabletop	30x
Sapien	visuo-motor coordination (manipulation)	kinematic manipulation	no	synthetic	few objects in an artificial room	30x
Gibson v1	visuo-motor coordination (navigation)	locomotion	no	reconstructed (LQ)	full real building	Зx
Habitat	visuo-motor coordination (navigation)	locomotion	no	reconstructed (HQ)	full real building	30x
AI2Thor	task planning	scripted manipulation	yes	synthetic	full artificial building	2-3x
iGibson	visuo-motor coordination (nav.+man.) task planning	kinematic manipulation and locomotion	no (but planned)	reconstructed + synthetic	full real building	20x

iGibson system overview

Three-level hierarchy from assets to tasks

Features of iGibson

Physically realistic large environments with free interactions and fast high-quality images

iGibson - Physics Realism

interactions with objects

Unconstrained rigid-body interaction with objects

Gibson V1 Static Environment

iGibson Interactive Environment

iGibson - Physics Realism

Unconstrained rigid-body interaction with objects

iGibson - Visual Realism

Scenes reconstructed and modeled from real world and rendered with high quality

iGibson - Ecological Scenes

iGibson scenes have ecological semantic distribution

• Tasks are defined in entire environments

iGibson - Simulation Speed

Accelerating robot learning and enabling virtual reality

	Render Target			
Computation	GPU Tensor	CPU Memory		
Physics Simulation + Rendering RGB Image	421 fps	205 fps		
Rendering RGB Images	778 fps	265 fps		
Rendering Surface Normal Images	878 fps	266 fps		

Robot Learning: Weeks → Hours

iGibson - Next Step

Transforming more environments into fully interactive

We include a cleaned environment with fully interactive set of objects. We are working on releasing 9 more.

Summary

- iGibson is a state-of-the-art simulator to train robots for visuomotor tasks: navigation and manipulation
- Includes hundreds of model of real-world large environments with interactive objects
- Enables easier sim2real transference of learned strategies
- We continue improving iGibson in multiple fronts. Check it out!

Download iGibson and try it yourself!

StanfordVL / C		O Unwatch → 17 ★ Star 44 ¥ Fork				
⇔ Code ① Iss	es 15 🗋 Pull requests 1 🛛 🖗	Actions 🗏 Proj	ects 0 💿 Wiki	C Security	li Insights	Settings
Simulator for inte	active navigation http://svl.st	anford.edu/gibsor	12/			Edit
-0- 1,476 commit	s 🖗 7 branches 0	🖲 0 packages	O releases	AL 10 contr	ibutors	套 MIT
Branch: master +	New pull request		Create new fi	le Upload files	Find file	Clone or download +
💏 fxia22 change	loor height			Lates	commit 9df	fc340 on Dec 25, 2019
docs	update					3 months ago
ill examples	yaml radian to degree chi	inge				3 months ago
gibson2	change floor height					3 months ago
ill misc	gcp guide					17 months ago
ill test	yaml radian to degree ch	inge				3 months ago
.dockerignore	update download instruct	ions				2 years ago
.gitignore	add renderer					15 months ago
.gitmodules	add renderer					15 months ago
.style.yapf	yapf style					10 months ago
.yapfignore	yapf style					10 months ago
	Initial commit					2 years ago
README.md	motion planning libraries,	internalize tinyobji	pader, and cleanups			4 months ago
🗎 clean.sh	add topdown shader for p	olotting				6 months ago
🗎 setup.py	tensor renderer revived					4 months ago
README.md						1

iGibson Code

Interactive Gibson Environment

https://github.com/StanfordVL/iGibson

iGibson Website

http://svl.stanford.edu/igibson

G A Interactive Gibson Environment

le Virtualized Interactive Environment for Learning Robot Manipulation and Navigation

HOME FEATURES DEMOS TEAM DOCS

Introduction

Interactive Gibson is a fast simulator and a dataset for indoor navigation and manipulation. It was first released in june 2019. It allows for Interactions between the agent and the environment, such as picking up and placing objects, or opening doors and adainets. This environment is up to a placing objects or opening doors and any adoit is allowing researchers to explore the synergy between manipulation and navigation interactive set of the se in June 2019. It allows for o ve Gibson Simulator or Interactive Gibson assets, please consider citing the following paper

Fei Xia, Chengshu Li, Kevin Chen, William B. Shen, Roberto Martin-Martin, Noriaki Hirose, Amir R. Zamir, Li Fei-Fei, and Silvio Savarese. "Gibsor env V2: Embodied Simulation Envir nts for Interactive Navigation." 2019, [Simula port coming soon] [Bibtex]

Physics Interaction with Articulated Objects

Install it with "pip"

Install it with "pip"

```
python -m gibson2.envs.demo_interactive
 (0.0) (0.0, 0.0, 0.0, 1.0) (1.0, 1.0, 1.0, 1.0) (1.0, 1.0, 1.0)
attrib.vertices = 1020
Num materials: 1
material 0
[1.0, 1.0, 1.0]
Num shapes: 1
/home/fei/anaconda2/envs/py35/lib/python3_5/site-nackages/gibson2/assets/models/
                                            🕽 🔵 test 👘
turtlebot/turtlebot_description/meshes/
                                                          s/plate_top.obj (0.0, 0.0,
0.0) (0.0, 0.0, 0.0, 1.0) (1.0, 1.0, 1.
                                                          1.0, 1.0
attrib.vertices = 1548
Num materials: 1
material 0
[1.0, 1.0, 1.0]
Num shapes: 1
/home/fei/anaconda2/envs/py35/lib/python3.5/site-packages/gibson2/assets/models/
turtlebot/turtlebot_description/meshes/sensors/kine( 🕲 😑 🗉 Bullet Physics ExampleBrowser using OpenGL3+ [btgl] R
0.0, 0.7071067966408575, 0.7071067657322372) (1.0,
                                                        File View
Explorer Test
                                                          Synthetic Camera RGB data
attrib.vertices = 9639
Num materials: 1
material 0
[1.0, 1.0, 1.0]
Num shapes: 1
```


Thank you!

iGibson Team and collaborators

Fei-Fei Li phd Professor

Silvio Savarese PhD Professor

Roberto Martín-Martín PhD Postdoctoral Scholar

Claudia Perez D'Arpino PhD Postdoctoral Scholar

Chengshu (Eric) Li PhD Student

Kent Vainio Undergraduate Research Assistant

Professor (Stanford)

Alexander Toshev PhD Research Scientist (Google Brain)

William Shen PhD Student

Sanjana Srivastava PhD Student

Lyne Tchapmi PhD Student

Shyamal Buch

PhD Student

Micael Tchapmi Visiting UG Scholar

TingTing Dong Phd NEC Research Scientist (NEC)