

3D Dynamic Scene Graphs Actionable Spatial Perception with Places, Objects, and Humans

Antoni Rosinol*, Arjun Gupta, Marcus Abate, Jingnan Shi, Luca Carlone

*arosinol@mit.edu

Motivation

Fully autonomous systems should operate given high-level tasks and figure out the necessary low-level tasks.

Bottleneck: 3D Scene Understanding

What does a robot need to accomplish high-level tasks?

Antoni Rosinol

3D Dynamic Scene Graphs

Kimera: Real-Time Metric-Semantic SLAM [1]

- Accurate and Robust State Estimation: state-of-the-art VIO
- Faithfull metric-semantic reconstruction
- Real-Time 100ms per frame (CPU-only)

Estimated

Ground-Truth

[1] Rosinol, Antoni and Abate, Marcus and Chang, Yun and Carlone, Luca. "Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping", ICRA 2020

Antoni Rosinol

3D Dynamic Scene Graphs

Problem

- Raw 3D semantic mesh is **not** actionable:
 - Obstacle Avoidance and Planning:
 - Not readily usable for path planning: `go to the kitchen`
 - Human-Robot Interaction:
 - 3D model readable for both humans and robots
 - Difficult to answer queries: `how many chairs are there?`
 - Long-term Autonomy:
 - Compact representation
 - Different levels of Abstractions
 - Forget/retain relevant information

5

3D Dynamic Scene-Graphs

3D Dynamic Scene-Graphs (DSGs)

- Layer 1: Metric-Semantic 3D Mesh
- Layer 2: Objects and Agents
- Layer 3: Places and Structures
- Layer 4: Rooms
- Layer 5: Buildings

- Layer 1: Metric-Semantic 3D Mesh (Kimera)
- Layer 2: Objects and Agents
- Layer 3: Places and Structures
- Layer 4: Rooms
- Layer 5: Buildings

- Layer 1: Metric-Semantic 3D Mesh
- Layer 2: Objects and Agents
- Layer 3: Places and Structures
- Layer 4: Rooms
- Layer 5: Buildings

- Object Attributes:
 - 3D Centroid, bounding box, semantic label, and instance id.
- Object instance extraction:
 - 1. Extract portions of the mesh with a semantic label.
 - 2. Clustering to extract instances (assumes 3D objects' instances are not touching!)
 - 3. Calculate centroid and bounding-box.
- We distinguish between:
 - Known objects: for which we have a CAD model, and
 - Unknown objects: no prior 3D model
- Known object instance fitting:
 - 1. Extract 3D keypoints (spheres in blue)
 - 2. Match all 3D keypoints from estimate and CAD model (=> outliers)
 - 3. Use TEASER++[1] to remove outliers and fit CAD model.

[1] Yang, Heng and Shi, Jingnan and Carlone, Luca. Teaser: Fast and certifiable point cloud registration. <u>https://arxiv.org/abs/2001.07715</u>

- Agents: dynamic entities in the environment: vehicles, humans, robots...
 - We model Agents by:
 - i. 3D Pose Graph*: describing their trajectory over time
 - ii. 3D Mesh Model: describing their (non-rigid) shape
 - iii. Semantic class: human, robot, ...
- Human Agents:
 - 1. Detection:
 - 1. Extract bounding box of image from semantic segmentation
 - 2. Estimate 3D mesh model (SMPL) of human using [1].
 - 2. Tracking:
 - 1. Incrementally build pose-graph with motion model
 - 2. Remove outliers and/or incorrect data associations by enforcing joint consistency (blue segments in (c))

(a) Image

(b) Detection

* A pose graph is a collection of time-stamped 3D poses where edges model pairwise relative measurements

[1] Kolotouros, Nikos and Pavlakos, Georgios and Daniilidis, Kostas . Convolutional mesh regression (C) Tracking for single-image human shape reconstruction. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019.

Antoni Rosinol

3D Dynamic Scene Graphs

5/19/20 12

- Human Agent Tracking:
 - Blue trajectory: corresponds to the built pose-graph
 - Rainbow human mesh: associated detections with pose-graph vertices.

- Dynamic Masking:
 - Non-static agents can corrupt 3D reconstruction: we avoid integrating dynamic agents in 3D metric-semantic mesh.

- Localization: KLT-IMU + 2-point RANSAC
- Mapping: Dynamic Masking
 - Avoid integrating dynamic agents in 3D metric-semantic mesh.

RGB Frame

We extend Kimera to mask dynamic objects in the mesh and use IMU-aware feature tracking, increasing robustness in crowded scenes

- Layer 1: Metric-Semantic 3D Mesh
- Layer 2: Objects and Agents
- Layer 3: Places and Structures
- Layer 4: Rooms
- Layer 5: Buildings

Layer 3: Places and Structures

- Places: free-space locations, edges represent traversability.
 - Modelled as a topological map (readily usable for path-planning!)
 - Each object and agent in Layer 2 is connected to the nearest place
- Structures:
 - Walls, floor, ceiling, pillars...

[1] H Oleynikova, Z Taylor, R Siegwart, J Nieto. Sparse 3d topological graphs for micro-aerial vehicle planning, IROS 2018.

- Layer 1: Metric-Semantic 3D Mesh
- Layer 2: Objects and Agents
- Layer 3: Places and Structures
- Layer 4: Rooms
- Layer 5: Buildings

Layer 4: Rooms

- Rooms: as well as corridors, halls ...
 - Attributes:
 - i. 3D pose
 - ii. Bounding box
 - iii. Semantic class (kitchen, corridor, bedroom...)
 - Connectivity between rooms represents traversability
 - Elements in Layer 3 (places, structures) are connected to their containing room nodes (Layer 4).

3D Dynamic Scene Graphs

Layer 4: Rooms

- Rooms detection:
 - A 2D slice of the 3D ESDF (Euclidean Signed Distance Function) below the detected ceiling is constant almost everywhere except near walls. Fig. (a).
 - 2. Truncate 2D ESDF to obtain disconnected sections corresponding to rooms. Fig. (b).
 - 3. Label nodes that fall inside a disconnected ESDF section with one room label (this only labels a subset of all nodes)
 - 4. Using topology of the Places graph, infer the rest of room labels using majority voting.

Fig. (b) Truncated 2D ESDF

- Layer 1: Metric-Semantic 3D Mesh
- Layer 2: Objects and Agents
- Layer 3: Places and Structures
- Layer 4: Rooms
- Layer 5: Buildings

Layer 5: Buildings

- Buildings
 - Attributes:
 - i. 3D pose
 - ii. Bounding box
 - iii. Semantic class (office building, residential house)
 - Elements in Layer 4 (rooms) are connected to their containing building (Layer 5).

В1

3D Dynamic Scene-Graphs

Thank you!