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Motivation

Goal is to place yellow box on the
red spot
Target location (red spot) might
be occupied
Multiple objects
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Motivation – Task and Motion Planning

symbolic
domain

motion
planning

discrete action sequence

feasibility

High-level action sequence a1:K ∈ A
(plan skeleton)
Motion planning problem
parameterized by a1:K , e.g. nonlinear
trajectory optimization (NLP)
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Motivation – Combinatorial Complexity

≈ 500,000 discrete action sequences
(up to length 6) reach the symbolic goal

Target location (red spot) might
be occupied
Kinematic constraints
(reachability, joint limits)

Majority of discrete action sequences is
infeasible
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Main Idea – Learning to Predict Action Sequences

Given scene and goal as input, predict
action sequence that leads to a feasible
motion plan.
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Contributions

1
Convolutional, recurrent neural network that predicts action sequences
from an initial scene image

2 Integration of the network into the tree search of TAMP framework

3 Generalization to scenarios with more objects than during training
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Logic Geometric Programming (LGP)

Optimization based approach to TAMP, developed by Marc Toussaint1

Main idea: Given a scene S

Find path x : [0,KT ]→ X in the configuration space X ⊂ Rn × SE (3)m as the
solution of an optimization problem
Path consists of K ∈ N phases, each of length T > 0
Costs and constraints are parameterized by a symbolic state variable s ∈ S
Time-discrete transitions of sk−1 to sk are subject to a first-order logic language
through actions a ∈ A(sk−1, S) (grounded action operators)
Symbolic goal g ∈ G

1 Toussaint et al., Differentiable Physics and Stable Modes for Tool-Use and Manipulation Planning, R:SS 2018
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Logic Geometric Programming (LGP)

P(g ,S) = min
K∈N

x :[0,KT ]→X
a1:K , s1:K

∫ KT

0
c
(
x(t), ẋ(t), ẍ(t), sk(t), S

)
dt (1a)

s.t.

∀t∈[0,KT ] : heq
(
x(t), ẋ(t), sk(t),S

)
= 0 (1b)

∀t∈[0,KT ] : hineq
(
x(t), ẋ(t), sk(t),S

)
≤ 0 (1c)

∀k=1,...,K : hsw
(
x(kT ), ẋ(kT ), ak ,S

)
= 0 (1d)

∀k=1,...,K : ak ∈ A(sk−1, S) (1e)
∀k=1,...,K : sk = succ(sk−1, ak) (1f)

x(0) = x̃0(S) (1g)
s0 = s̃0(S) (1h)
sK ∈ Sgoal(g) (1i)
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Multi-Bound Tree Search

Logic defines a decision tree through ak ∈ A(sk−1) and sk = succ(sk−1, ak)
Each node corresponds to a nonlinear program (NLP)
Leaf nodes are candidates for a feasible solution (sK ∈ Sgoal(g))

Lower bounds on the full path problem to guide tree search
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Multi-Bound Tree Search – Problems

Approx. 500,000 leaf nodes
up to depth 6

However, many actions in
early phases of the sequence
are feasible. Therefore, lower
bounds do not help much
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Deep Visual Reasoning

Given the scene and goal as input, learn to predict promising action sequences such
that (ideally) only one optimization problem would have to be solved.

How to encode scene and goal as input to a learning algorithm?
How to generalize to changing numbers of objects in the scene?
How to deal with prediction errors?
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Deep Visual Reasoning – Predicting Action Sequences

Set of candidate action sequences

T (g ,S)=
{
a1:K : ∀K

i=1 ai ∈ A(si−1,S), si = succ(si−1, ai ), s0 = s̃0(S), sK ∈ Sgoal(g)
}

Feasibility of an action sequence a1:K = (a1, . . . , aK )

FS (a1:K ) =
{
1 ∃x : [0,KT ]→ X : (1b)− (1h)
0 else

First idea: Learn F̂S(a1:K ) and then

argmax
a1:K∈T (g ,S)

F̂S(a1:K )
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Deep Visual Reasoning – Predicting Action Sequences

π
(
ak , g , a1, . . . , ak−1, S

)
=

p
(
∃K≥k∃ak+1,...,aK : a1:K ∈ T (g ,S) , FS (a1:K ) = 1

∣∣∣ ak , g , a1, . . . , ak−1, S
)
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Deep Visual Reasoning – Training Targets

Sample scenes S i , goals g i and goal-reaching action sequences ai
1:K i ∈ T

(
g i , S i), e.g.

with breadth-first search
Ddata =

{(
S i , ai

1:K i , g i ,FS i

(
ai
1:K i

) )}n

i=1
Training dataset for π

Dtrain =
{(

S i , ai
1:K i , g i , f i

)}n

i=1

where f i ∈ {0, 1}Ki is a sequence of binary labels with components

f i
j =



1 FS i
(
ai
1:K i

)
= 1

1 ∃
(
S l , al

1:K l , g l ,F l
)
∈ Ddata :

F l = FS l

(
al
1:K l

)
= 1

∧ g l = g i ∧ al
1:j = ai

1:j
0 else
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Relation to (Universal) Q-Functions

No clear notion of state!
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States in LGP
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States in LGP
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Input to the Neural Network – Encoding a, g and S

How to encode objects if their number can change?
Instead of feature space representation with fixed dimension, encode scene in
image space (depth image)
Object masks in image space to encode object identity
Train on only two objects present in the scene
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Input to the Neural Network – Encoding a, g and S

Given an action a, decompose it into

a = (ā,O) ∈ AO(s,S) ⊂ A× P(O(S)),

where ā ∈ A discrete action operator symbol and O ∈ P(O(S)) the tuple of objects
the action operates on.
Goal similarly decomposed into g = (ḡ ,Og ), ḡ ∈ G, Og ∈ P(O(S)).

Cardinality of A and G is independent of the scene
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Encoding the objects O and Og in the image space

Object tuple O is encoded in nc + nO-channel image
I : (O, S) 7→ R(nc +nO)×w×h
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Network Architecture

Action
Encoder

Object-image
CNN

Goal
Encoder

Object-image
CNN

Action
āk

Action-object
image I(Ok ,S)

Goal
ḡ

Goal-object
image I(Og , S)

RNN

hk−1

hk

σ pπ

(pπ, hk) = πNN
(
āk , I(Ok , S), ḡ , I(Og , S), hk−1

)
= π

(
ak , g , a1:k−1,S

)
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Experiments



Experiments – Handover

Number of solved NLPs: 1

Total solution time: 1.6 s
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Experiments – Geometry Dependence

Number of solved NLPs: 1

Total solution time: 2.1 s

Handover not possible anymore!
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Experiments – Placement on Table

Number of solved NLPs: 1

Total solution time: 2.0 s
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Experiments – Generalization to Multiple Objects

Number of solved NLPs: 1

Total solution time: 1.5 s
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Experiments – Interesting Collaboration of the Two Arms

Number of solved NLPs: 1

Total solution time: 0.9 s
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Experiments – Generalization to Multiple Objects

Number of solved NLPs: 1

Total solution time: 1.0 s
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Experiments – Object slightly moved – Handover again

Number of solved NLPs: 1

Total solution time: 1.5 s
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Experiments – Only one arm needed

Number of solved NLPs: 1

Total solution time: 1.2 s
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Experiments – Both arms and many objects

Number of solved NLPs: 1

Total solution time: 1.8 s
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Experiments – Real Robot
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Results – Performance on Test Cases with Two Objects
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Usually the first proposed action sequence is feasible
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Results – Comparison to LGP Tree Search
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Results – Generalization to Multiple Objects
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Conclusion

Predict discrete action sequence for Task and Motion Planning from an initial
scene image
High accuracy, i.e. most of the time the first predicted sequence is feasible
Generalization to multiple objects

Checkout papers
D. Driess, J. Ha, and M. Toussaint: Deep Visual Reasoning: Learning to Predict
Action Sequences for Task and Motion Planning from an Initial Scene Image. In
Proc. of Robotics: Science and Systems (R:SS), 2020
D. Driess, O. Oguz, J. Ha, and M. Toussaint: Deep Visual Heuristics: Learning
Feasibility of Mixed-Integer Programs for Manipulation Planning. In Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), 2020
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