Deep Visual Reasoning: Learning to Predict Action Sequences for Task and Motion Planning from an Initial Scene Image

Danny Driess Jung-Su Ha Marc Toussaint

Machine Learning & Robotics Lab – University of Stuttgart Max-Planck Institute for Intelligent Systems – Stuttgart Learning and Intelligent Systems – TU-Berlin

3D Scene Understanding for Vision, Graphics, and Robotics – CVPR 2020 Workshop

Motivation

- Goal is to place yellow box on the red spot
- Target location (red spot) might be occupied
- Multiple objects

Motivation – Task and Motion Planning

Motivation – Task and Motion Planning

 High-level action sequence a_{1:K} ∈ A (plan skeleton)

Motivation – Task and Motion Planning

- High-level action sequence a_{1:K} ∈ A (plan skeleton)
- Motion planning problem parameterized by a_{1:K}, e.g. nonlinear trajectory optimization (NLP)

Motivation – Combinatorial Complexity

 $\approx~500,000\,$ discrete action sequences (up to length 6) reach the symbolic goal

- Target location (red spot) might be occupied
- Kinematic constraints (reachability, joint limits)

Majority of discrete action sequences is **infeasible**

Main Idea – Learning to Predict Action Sequences

Given scene and goal as input, predict action sequence that leads to a feasible motion plan.

Contributions

Convolutional, recurrent neural network that predicts action sequences from an initial scene image

Contributions

1 Convolutional, recurrent neural network that predicts action sequences from an initial scene image

2 Integration of the network into the tree search of TAMP framework

Contributions

Convolutional, recurrent neural network that predicts action sequences from an initial scene image

2 Integration of the network into the tree search of TAMP framework

3 Generalization to scenarios with more objects than during training

Optimization based approach to TAMP, developed by Marc Toussaint¹

Optimization based approach to TAMP, developed by Marc Toussaint¹

Main idea: Given a scene S

Find path x : [0, KT] → X in the configuration space X ⊂ ℝⁿ × SE(3)^m as the solution of an optimization problem

¹ Toussaint et al., Differentiable Physics and Stable Modes for Tool-Use and Manipulation Planning, R:SS 2018 Danny Driess, Uni Stuttgart: Deep Visual Reasoning: Learning to Predict Action Sequences for Task and Motion Planning from an Initial Scene Image

Optimization based approach to TAMP, developed by Marc Toussaint¹

Main idea: Given a scene S

- Find path x : [0, KT] → X in the configuration space X ⊂ ℝⁿ × SE(3)^m as the solution of an optimization problem
- Path consists of $K \in \mathbb{N}$ phases, each of length T > 0

¹ Toussaint et al., Differentiable Physics and Stable Modes for Tool-Use and Manipulation Planning, R:SS 2018 Danny Driess, Uni Stuttgart: Deep Visual Reasoning: Learning to Predict Action Sequences for Task and Motion Planning from an Initial Scene Image

Optimization based approach to TAMP, developed by Marc Toussaint¹

Main idea: Given a scene S

- Find path x : [0, KT] → X in the configuration space X ⊂ ℝⁿ × SE(3)^m as the solution of an optimization problem
- Path consists of $K \in \mathbb{N}$ phases, each of length T > 0
- Costs and constraints are parameterized by a symbolic state variable $s \in \mathcal{S}$

¹ Toussaint et al., Differentiable Physics and Stable Modes for Tool-Use and Manipulation Planning, R:SS 2018 Danny Driess, Uni Stuttgart: Deep Visual Reasoning: Learning to Predict Action Sequences for Task and Motion Planning from an Initial Scene Image

Optimization based approach to TAMP, developed by Marc Toussaint¹

Main idea: Given a scene S

- Find path x : [0, KT] → X in the configuration space X ⊂ ℝⁿ × SE(3)^m as the solution of an optimization problem
- Path consists of $K \in \mathbb{N}$ phases, each of length T > 0
- Costs and constraints are parameterized by a symbolic state variable $s \in \mathcal{S}$
- Time-discrete transitions of s_{k-1} to s_k are subject to a first-order logic language through actions $a \in \mathbb{A}(s_{k-1}, S)$ (grounded action operators)

¹ Toussaint et al., Differentiable Physics and Stable Modes for Tool-Use and Manipulation Planning, R:SS 2018 Danny Driess, Uni Stuttgart: Deep Visual Reasoning: Learning to Predict Action Sequences for Task and Motion Planning from an Initial Scene Image

Optimization based approach to TAMP, developed by Marc Toussaint¹

Main idea: Given a scene S

- Find path x : [0, KT] → X in the configuration space X ⊂ ℝⁿ × SE(3)^m as the solution of an optimization problem
- Path consists of $K \in \mathbb{N}$ phases, each of length T > 0
- Costs and constraints are parameterized by a symbolic state variable $s \in \mathcal{S}$
- Time-discrete transitions of s_{k-1} to s_k are subject to a first-order logic language through actions a ∈ A(s_{k-1}, S) (grounded action operators)
- Symbolic goal $g \in \mathbb{G}$

¹ Toussaint et al., Differentiable Physics and Stable Modes for Tool-Use and Manipulation Planning, R:SS 2018 Danny Driess, Uni Stuttgart: Deep Visual Reasoning: Learning to Predict Action Sequences for Task and Motion Planning from an Initial Scene Image

$$P(g,S) = \min_{\substack{K \in \mathbb{N} \\ x: [0,KT] \to \mathcal{X} \\ a_{1:K}, s_{1:K}}} \int_0^{KT} c(x(t), \dot{x}(t), \dot{x}(t), s_{k(t)}, S) dt$$
(1a)
s.t.

 $\begin{array}{ll} \forall_{t \in [0, KT]} : & h_{eq}(x(t), \dot{x}(t), s_{k(t)}, S) = 0 & (1b) \\ \forall_{t \in [0, KT]} : & h_{ineq}(x(t), \dot{x}(t), s_{k(t)}, S) \leq 0 & (1c) \\ \forall_{k=1, \dots, K} : & h_{sw}(x(kT), \dot{x}(kT), a_k, S) = 0 & (1d) \\ \forall_{k=1, \dots, K} : & a_k \in \mathbb{A}(s_{k-1}, S) & (1e) \end{array}$

$$\forall_{k=1,\dots,K}: \qquad s_k = \operatorname{succ}(s_{k-1}, a_k) \qquad (1f)$$

$$x(0) = \tilde{x}_0(S) \tag{1g}$$

$$s_0 = \tilde{s}_0(S) \tag{1h}$$

$$s_{\mathcal{K}} \in \mathcal{S}_{\mathsf{goal}}(g)$$
 (1i)

Multi-Bound Tree Search

- Logic defines a decision tree through $a_k \in \mathbb{A}(s_{k-1})$ and $s_k = \operatorname{succ}(s_{k-1}, a_k)$
- Each node corresponds to a nonlinear program (NLP)
- Leaf nodes are candidates for a feasible solution $(s_{\mathcal{K}} \in \mathcal{S}_{\mathsf{goal}}(g))$

Multi-Bound Tree Search

- Logic defines a decision tree through $a_k \in \mathbb{A}(s_{k-1})$ and $s_k = \operatorname{succ}(s_{k-1}, a_k)$
- Each node corresponds to a nonlinear program (NLP)
- Leaf nodes are candidates for a feasible solution $(s_{\mathcal{K}} \in \mathcal{S}_{\mathsf{goal}}(g))$
- Lower bounds on the full path problem to guide tree search

Multi-Bound Tree Search – Problems

• Approx. 500,000 leaf nodes up to depth 6

Multi-Bound Tree Search – Problems

- Approx. 500,000 leaf nodes up to depth 6
- However, many actions in early phases of the sequence are feasible. Therefore, lower bounds do not help much

Deep Visual Reasoning

Given the scene and goal as input, learn to predict promising action sequences such that (ideally) only one optimization problem would have to be solved.

Deep Visual Reasoning

Given the scene and goal as input, learn to predict promising action sequences such that (ideally) only one optimization problem would have to be solved.

- How to encode scene and goal as input to a learning algorithm?
- How to generalize to changing numbers of objects in the scene?
- How to deal with prediction errors?

Set of candidate action sequences

$$\mathcal{T}\left(g,S\right) \!=\! \left\{ \textit{a}_{1:\mathcal{K}}: \hspace{0.1cm} \forall_{i=1}^{\mathcal{K}} \hspace{0.1cm}\textit{a}_i \in \mathbb{A}(\textit{s}_{i-1},S), \hspace{0.1cm}\textit{s}_i = \texttt{succ}(\textit{s}_{i-1},\textit{a}_i), \hspace{0.1cm}\textit{s}_0 = \tilde{\textit{s}}_0(S), \hspace{0.1cm}\textit{s}_{\mathcal{K}} \in \mathcal{S}_{\texttt{goal}}(g) \right\}$$

Set of candidate action sequences

$$\mathcal{T}\left(g,S\right) \!=\! \left\{ \textbf{\textit{a}}_{1:\mathcal{K}}: \hspace{0.1cm} \forall_{i=1}^{\mathcal{K}} \hspace{0.1cm} \textbf{\textit{a}}_i \in \mathbb{A}(\textbf{\textit{s}}_{i-1},S), \hspace{0.1cm} \textbf{\textit{s}}_i = \texttt{succ}(\textbf{\textit{s}}_{i-1},\textbf{\textit{a}}_i), \hspace{0.1cm} \textbf{\textit{s}}_0 = \tilde{\textbf{\textit{s}}}_0(S), \hspace{0.1cm} \textbf{\textit{s}}_{\mathcal{K}} \in \mathcal{S}_{\texttt{goal}}(g) \right\}$$

Feasibility of an action sequence $a_{1:K} = (a_1, \ldots, a_K)$

$$F_{S}(a_{1:K}) = \begin{cases} 1 & \exists x : [0, KT] \rightarrow \mathcal{X} : (1b) - (1h) \\ 0 & \text{else} \end{cases}$$

Set of candidate action sequences

$$\mathcal{T}\left(g,S\right) \!=\! \left\{ \textit{a}_{1:\mathcal{K}}: \hspace{0.1cm} \forall_{i=1}^{\mathcal{K}} \hspace{0.1cm}\textit{a}_i \in \mathbb{A}(\textit{s}_{i-1},S), \hspace{0.1cm} \textit{s}_i = \texttt{succ}(\textit{s}_{i-1},\textit{a}_i), \hspace{0.1cm} \textit{s}_0 = \tilde{\textit{s}}_0(S), \hspace{0.1cm} \textit{s}_{\mathcal{K}} \in \mathcal{S}_{\texttt{goal}}(g) \right\}$$

Feasibility of an action sequence $a_{1:K} = (a_1, \ldots, a_K)$

$$F_{S}(a_{1:K}) = \begin{cases} 1 & \exists x : [0, KT] \rightarrow \mathcal{X} : (1b) - (1h) \\ 0 & \text{else} \end{cases}$$

First idea: Learn $\hat{F}_{S}(a_{1:K})$ and then

$$\mathop{\mathrm{argmax}}_{\mathfrak{P}_{1:K}\in\mathcal{T}(g,S)}\hat{F}_{S}(a_{1:K})$$

Danny Driess, Uni Stuttgart: Deep Visual Reasoning: Learning to Predict Action Sequences for Task and Motion Planning from an Initial Scene Image

$$\pi(a_{k}, g, a_{1}, \dots, a_{k-1}, S) = p\left(\exists_{K \geq k} \exists_{a_{k+1}, \dots, a_{K}} : a_{1:K} \in \mathcal{T}(g, S), F_{S}(a_{1:K}) = 1 \mid a_{k}, g, a_{1}, \dots, a_{k-1}, S\right)$$

Deep Visual Reasoning – Training Targets

Sample scenes S^i , goals g^i and goal-reaching action sequences $a_{1:K^i}^i \in \mathcal{T}(g^i, S^i)$, e.g. with breadth-first search

$$\mathcal{D}_{\text{data}} = \left\{ \left(S^{i}, a^{i}_{1:\mathcal{K}^{i}}, g^{i}, \mathcal{F}_{S^{i}}\left(a^{i}_{1:\mathcal{K}^{i}}\right) \right) \right\}_{i=1}^{n}$$

Training dataset for π

$$\mathcal{D}_{ ext{train}} = \left\{ \left(S^i, a^i_{1:\mathcal{K}^i}, g^i, f^i
ight)
ight\}_{i=1}^n$$

where $f^i \in \{0,1\}^{K_i}$ is a sequence of binary labels with components

$$f_{j}^{i} = \begin{cases} 1 & F_{S^{i}}\left(a_{1:K^{i}}^{i}\right) = 1\\ 1 & \exists \left(S^{l}, a_{1:K^{l}}^{l}, g^{l}, F^{l}\right) \in \mathcal{D}_{\text{data}}:\\ & F^{l} = F_{S^{l}}\left(a_{1:K^{l}}^{l}\right) = 1\\ & \land g^{l} = g^{i} \land a_{1:j}^{l} = a_{1:j}^{i}\\ 0 & \text{else} \end{cases}$$

Danny Driess, Uni Stuttgart: Deep Visual Reasoning: Learning to Predict Action Sequences for Task and Motion Planning from an Initial Scene Image

Relation to (Universal) Q-Functions

Relation to (Universal) Q-Functions

No clear notion of state!

Input to the Neural Network – Encoding *a*, *g* and *S*

How to encode objects if their number can change?

- Instead of feature space representation with fixed dimension, encode scene in image space (depth image)
- Object masks in image space to encode object identity
- Train on only two objects present in the scene

Input to the Neural Network – Encoding *a*, *g* and *S*

Given an action a, decompose it into

$$a = (\bar{a}, O) \in \mathcal{AO}(s, S) \subset \mathcal{A} imes \mathcal{P}(\mathcal{O}(S)),$$

where $\bar{a} \in A$ discrete action operator symbol and $O \in \mathcal{P}(\mathcal{O}(S))$ the *tuple* of objects the action operates on.

Goal similarly decomposed into $g = (\bar{g}, O_g)$, $\bar{g} \in \mathcal{G}$, $O_g \in \mathcal{P}(\mathcal{O}(S))$.

Input to the Neural Network – Encoding *a*, *g* and *S*

Given an action a, decompose it into

$$a = (\bar{a}, O) \in \mathcal{AO}(s, S) \subset \mathcal{A} imes \mathcal{P}(\mathcal{O}(S)),$$

where $\bar{a} \in A$ discrete action operator symbol and $O \in \mathcal{P}(\mathcal{O}(S))$ the *tuple* of objects the action operates on.

Goal similarly decomposed into $g = (\bar{g}, O_g), \, \bar{g} \in \mathcal{G}, \, O_g \in \mathcal{P}(\mathcal{O}(S)).$

Cardinality of ${\mathcal A}$ and ${\mathcal G}$ is independent of the scene

Encoding the objects O and O_g in the image space

Object tuple O is encoded in $n_c + n_O$ -channel image

 $I: (O, S) \mapsto \mathbb{R}^{(n_c+n_O) \times w \times h}$

Danny Driess, Uni Stuttgart: Deep Visual Reasoning: Learning to Predict Action Sequences for Task and Motion Planning from an Initial Scene Image

Network Architecture

Danny Driess, Uni Stuttgart: Deep Visual Reasoning: Learning to Predict Action Sequences for Task and Motion Planning from an Initial Scene Image

Experiments

Experiments – Handover

Number of solved NLPs: 1

Total solution time: 1.6 s

Experiments – Geometry Dependence

Number of solved NLPs: 1

Total solution time: 2.1 s

Handover not possible anymore!

Experiments – Placement on Table

Number of solved NLPs: 1

Total solution time: 2.0 s

Experiments – Generalization to Multiple Objects

Number of solved NLPs: 1

Total solution time: 1.5 s

Experiments – Interesting Collaboration of the Two Arms

Number of solved NLPs: 1

Total solution time: 0.9 s

Experiments – Generalization to Multiple Objects

Number of solved NLPs: 1

Total solution time: 1.0 s

Experiments – Object slightly moved – Handover again

Number of solved NLPs: 1

Total solution time: 1.5 s

Experiments – Only one arm needed

Number of solved NLPs: 1

Total solution time: 1.2 s

Experiments – Both arms and many objects

Number of solved NLPs: 1

Total solution time: 1.8 s

Experiments – Real Robot

Results – Performance on Test Cases with Two Objects

Results – Performance on Test Cases with Two Objects

Usually the first proposed action sequence is feasible

Danny Driess, Uni Stuttgart: Deep Visual Reasoning: Learning to Predict Action Sequences for Task and Motion Planning from an Initial Scene Image

Results – Comparison to LGP Tree Search

Results – Generalization to Multiple Objects

Danny Driess, Uni Stuttgart: Deep Visual Reasoning: Learning to Predict Action Sequences for Task and Motion Planning from an Initial Scene Image

Conclusion

- Predict discrete action sequence for Task and Motion Planning from an initial scene image
- High accuracy, i.e. most of the time the first predicted sequence is feasible
- · Generalization to multiple objects

Checkout papers

- D. Driess, J. Ha, and M. Toussaint: *Deep Visual Reasoning: Learning to Predict Action Sequences for Task and Motion Planning from an Initial Scene Image.* In Proc. of Robotics: Science and Systems (R:SS), 2020
- D. Driess, O. Oguz, J. Ha, and M. Toussaint: Deep Visual Heuristics: Learning Feasibility of Mixed-Integer Programs for Manipulation Planning. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2020